咨询与建议

限定检索结果

文献类型

  • 69 篇 期刊文献
  • 39 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 109 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 101 篇 工学
    • 63 篇 计算机科学与技术...
    • 33 篇 电气工程
    • 13 篇 信息与通信工程
    • 9 篇 控制科学与工程
    • 9 篇 软件工程
    • 6 篇 仪器科学与技术
    • 4 篇 电子科学与技术(可...
    • 3 篇 机械工程
    • 3 篇 化学工程与技术
    • 3 篇 生物医学工程(可授...
    • 2 篇 测绘科学与技术
    • 2 篇 航空宇航科学与技...
    • 2 篇 环境科学与工程(可...
    • 2 篇 生物工程
  • 28 篇 理学
    • 10 篇 生物学
    • 7 篇 物理学
    • 7 篇 地球物理学
    • 6 篇 数学
    • 5 篇 化学
    • 3 篇 大气科学
    • 2 篇 天文学
    • 2 篇 统计学(可授理学、...
    • 1 篇 地理学
    • 1 篇 地质学
    • 1 篇 系统科学
    • 1 篇 生态学
  • 16 篇 医学
    • 8 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 2 篇 特种医学
  • 7 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 2 篇 农学

主题

  • 109 篇 adversarial auto...
  • 16 篇 deep learning
  • 14 篇 anomaly detectio...
  • 8 篇 generative adver...
  • 8 篇 unsupervised lea...
  • 7 篇 feature extracti...
  • 6 篇 variational auto...
  • 6 篇 machine learning
  • 5 篇 generative adver...
  • 4 篇 semi-supervised ...
  • 4 篇 human activity r...
  • 3 篇 ground reaction ...
  • 3 篇 synthetic apertu...
  • 3 篇 time series
  • 3 篇 gan
  • 2 篇 clustering
  • 2 篇 drug discovery
  • 2 篇 inertial measure...
  • 2 篇 generative model
  • 2 篇 synthetic data g...

机构

  • 3 篇 china univ geosc...
  • 2 篇 chongqing normal...
  • 2 篇 zhejiang univ co...
  • 2 篇 gifu univ fac en...
  • 2 篇 istanbul tech un...
  • 2 篇 ludwig maximilia...
  • 2 篇 kyoto univ grad ...
  • 2 篇 aselsan inc anka...
  • 1 篇 wenzhou univ col...
  • 1 篇 univ michigan de...
  • 1 篇 nanjing univ pos...
  • 1 篇 hong kong polyte...
  • 1 篇 shandong univ ke...
  • 1 篇 fudan univ sch c...
  • 1 篇 univ waterloo wa...
  • 1 篇 univ vienna fac ...
  • 1 篇 key lab comp vir...
  • 1 篇 middlesex univ e...
  • 1 篇 south china univ...
  • 1 篇 yonsei univ grad...

作者

  • 3 篇 hernandez vincen...
  • 3 篇 venture gentiane
  • 3 篇 zuo renguang
  • 2 篇 zhang fuzhi
  • 2 篇 yaslan yusuf
  • 2 篇 tuzen ahmet
  • 2 篇 goto keisuke
  • 2 篇 yan hao
  • 2 篇 zhang chunjie
  • 2 篇 aizawa hiroaki
  • 2 篇 saito takaho
  • 2 篇 xiong yihui
  • 2 篇 zhou jinglin
  • 2 篇 kato kunihito
  • 2 篇 yeh huai-ming
  • 2 篇 li mingyong
  • 2 篇 cao zeyu
  • 1 篇 li yonghui
  • 1 篇 meng fanli
  • 1 篇 zhang tao

语言

  • 107 篇 英文
  • 2 篇 其他
检索条件"主题词=Adversarial autoencoder"
109 条 记 录,以下是71-80 订阅
排序:
Analysis of the B5G/6G Communication Power Entropy Patterns Based on Generative AI Methods  3
Analysis of the B5G/6G Communication Power Entropy Patterns ...
收藏 引用
3rd Conference on Information Technology and Data Science
作者: Talbi, Djamila Gal, Zoltan Univ Debrecen Fac Informat Debrecen Hungary
Moving toward new and higher frequencies would bring the 6G communication network into practice. Using a new MAC mechanism will enhance and overcome the THz challenges. Our paper focused on analyzing the entropy inter... 详细信息
来源: 评论
Spammer Group Detection Approach Based on Deep Reinforcement Learning  20th
Spammer Group Detection Approach Based on Deep Reinforcement...
收藏 引用
20th International Conference on Intelligent Computing (ICIC)
作者: Huo, Chenghang Cui, Jindong Ma, Ru Luo, Yunfei Zhang, Fuzhi Yanshan Univ Sch Informat Sci & Engn Qinhuangdao Hebei Peoples R China
Detecting spammer groups is important for maintaining the normal operation of e-commerce platforms. Nevertheless, current spammer group detection methods ignore the overlapping between spammer groups. Moreover, hand-c... 详细信息
来源: 评论
Multi-view face generation via unpaired images
收藏 引用
VISUAL COMPUTER 2022年 第7期38卷 2539-2554页
作者: Wang, Shuai Zou, Yanni Min, Weidong Wu, Jiansheng Xiong, Xin Nanchang Univ Sch Informat Engn Nanchang 330031 Jiangxi Peoples R China Nanchang Univ Sch Software Nanchang 330047 Jiangxi Peoples R China Jiangxi Key Lab Smart City Nanchang 330047 Jiangxi Peoples R China
Multi-view face generation from a single image is an essential and challenging problem. Most of the existing methods need to use paired images when training models. However, collecting and labeling large-scale paired ... 详细信息
来源: 评论
adversarial Anomaly Detection using Gaussian Priors and Nonlinear Anomaly Scores  23
Adversarial Anomaly Detection using Gaussian Priors and Nonl...
收藏 引用
23rd IEEE International Conference on Data Mining (IEEE ICDM)
作者: Lueer, Fiete Weber, Tobias Dolgich, Maxim Boehm, Christian eMundo Gmbh Gofore Oyj Munich Germany Ludwig Maximilians Univ Munchen Dept Stat Munich Germany Univ Vienna Fac Comp Sci Vienna Austria
Anomaly detection in imbalanced datasets is a frequent and crucial problem, especially in the medical domain where retrieving and labeling irregularities is often expensive. By combining the generative stability of a ... 详细信息
来源: 评论
Visual Interpretable Deep Learning Algorithm for Geochemical Anomaly Recognition
收藏 引用
NATURAL RESOURCES RESEARCH 2022年 第5期31卷 2211-2223页
作者: Luo, Zijing Zuo, Renguang Xiong, Yihui China Univ Geosci State Key Lab Geol Proc & Mineral Resources Wuhan 430074 Peoples R China
Deep learning algorithms (DLAs) have achieved better results than traditional methods in the field of multivariate geochemical anomaly recognition because of their strong ability to extract feature from nonlinear data... 详细信息
来源: 评论
Self-Supervised Learning Based Anomaly Detection in Synthetic Aperture Radar Imaging
IEEE OPEN JOURNAL OF SIGNAL PROCESSING
收藏 引用
IEEE OPEN JOURNAL OF SIGNAL PROCESSING 2022年 3卷 440-449页
作者: Muzeau, Max Ren, Chengfang Angelliaume, Sebastien Datcu, Mihai Ovarlez, Jean-Philippe Univ Paris Saclay SONDRA CentraleSupelec F-91190 Gif Sur Yvette France Univ Paris Saclay DEMR CentraleSupelec F-91190 Gif Sur Yvette France Univ Politehn Bucharest UPB Romania & German Aerosp Ctr DLR D-82234 Wessling Germany
In this paper, we proposed to investigate unsupervised anomaly detection in Synthetic Aperture Radar (SAR) images. Our approach considers anomalies as abnormal patterns that deviate from their surroundings without pri... 详细信息
来源: 评论
Robust Anomaly Detection in Images Using adversarial autoencoders
Robust Anomaly Detection in Images Using Adversarial Autoenc...
收藏 引用
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD)
作者: Beggel, Laura Pfeiffer, Michael Bischl, Bernd Bosch Ctr Artificial Intelligence Renningen Germany Ludwig Maximilians Univ Munchen Dept Stat Munich Germany
Reliably detecting anomalies in a given set of images is a task of high practical relevance for visual quality inspection, surveillance, or medical image analysis. autoencoder neural networks learn to reconstruct norm... 详细信息
来源: 评论
adversarial autoencoders for denoising digitized historical documents: the use case of incunabula  3
Adversarial Autoencoders for denoising digitized historical ...
收藏 引用
15th IAPR International Conference on Document Analysis and Recognition (ICDAR) / 3rd International Workshop on Arabic and derived Script Analysis and Recognition (ASAR)
作者: Neji, Hala Nogueras-Iso, Javier Lacasta, Javier Ben Halima, Mohamed Alimi, Adel M. Univ Sfax Natl Engn Sch Sfax ENIS REGIM Lab Res Grp Intelligent Machines BP 1173 Sfax 3038 Tunisia Univ Gabes Gabes Tunisia Univ Zaragoza I3A Zaragoza Spain
Historical document denoising is the most challenging step in the field of image processing and computer vision. In this paper, we propose a novel end-to-end adversarial autoencoder (AAE) to generate clean images and ... 详细信息
来源: 评论
adversarial random graph neural network for anomaly detection
收藏 引用
DIGITAL SIGNAL PROCESSING 2024年 146卷
作者: Tuzen, Ahmet Yaslan, Yusuf Aselsan Inc Ankara Turkiye Istanbul Tech Univ Istanbul Turkiye
Anomaly detection is distinguishing unusual objects from normal patterns. It is a complex task due to unpredictable nature of anomalies, which can appear in many forms or they can be hidden by mimicking normal behavio... 详细信息
来源: 评论
DeGAN- Decomposition-based unified anomaly detection in static networks
收藏 引用
INFORMATION SCIENCES 2024年 677卷
作者: Tuzen, Ahmet Yaslan, Yusuf Aselsan Inc Ankara Turkiye Istanbul Tech Univ Istanbul Turkiye
Graph anomaly detection aims to identify anomalous occurrences in networks. However, this is more challenging than the traditional anomaly detection problem because anomalies in graphs can manifest in three different ... 详细信息
来源: 评论