咨询与建议

限定检索结果

文献类型

  • 7 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 13 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 13 篇 工学
    • 10 篇 计算机科学与技术...
    • 5 篇 电气工程
    • 2 篇 信息与通信工程
    • 2 篇 测绘科学与技术
    • 2 篇 软件工程
    • 1 篇 生物医学工程(可授...
  • 4 篇 理学
    • 1 篇 数学
    • 1 篇 物理学
    • 1 篇 地理学
    • 1 篇 地球物理学
    • 1 篇 生物学
  • 1 篇 农学
  • 1 篇 医学
    • 1 篇 临床医学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 13 篇 adversarial exam...
  • 3 篇 deep learning
  • 2 篇 adversarial atta...
  • 1 篇 hd-semg
  • 1 篇 object detection
  • 1 篇 class activate m...
  • 1 篇 reinforcement le...
  • 1 篇 reconstruction
  • 1 篇 adversarial defe...
  • 1 篇 deep neural netw...
  • 1 篇 safe ai
  • 1 篇 neural nets
  • 1 篇 deep learning ro...
  • 1 篇 semantic inconsi...
  • 1 篇 universal advers...
  • 1 篇 detection mechan...
  • 1 篇 non-robust featu...
  • 1 篇 uavs vision syst...
  • 1 篇 natural perturba...
  • 1 篇 attribution map

机构

  • 2 篇 univ elect sci &...
  • 1 篇 zhejiang univ de...
  • 1 篇 lehigh univ dept...
  • 1 篇 purple mt labs p...
  • 1 篇 jinan univ natl ...
  • 1 篇 univ sci & techn...
  • 1 篇 jinan univ coll ...
  • 1 篇 multimedia univ ...
  • 1 篇 univ elect sci &...
  • 1 篇 wenzhou univ nat...
  • 1 篇 univ elect sci &...
  • 1 篇 guangzhou univ p...
  • 1 篇 univ sci & techn...
  • 1 篇 univ technol syd...
  • 1 篇 deakin univ inst...
  • 1 篇 univ illinois de...
  • 1 篇 multimedia univ ...
  • 1 篇 univ warwick wmg...
  • 1 篇 univ liverpool l...
  • 1 篇 scuola superiore...

作者

  • 2 篇 liu qihe
  • 2 篇 zhang zhun
  • 2 篇 zhou shijie
  • 1 篇 chen qizheng
  • 1 篇 cao yuanjiang
  • 1 篇 chen xun
  • 1 篇 goh pey yun
  • 1 篇 wu chunjiang
  • 1 篇 banks alec
  • 1 篇 wu chunming
  • 1 篇 biondi alessandr...
  • 1 篇 wang shuai
  • 1 篇 zhang kui
  • 1 篇 xue bo
  • 1 篇 sim kok swee
  • 1 篇 huang sizhao
  • 1 篇 ji shouling
  • 1 篇 zhang wei emma
  • 1 篇 yan zhangbao
  • 1 篇 cox victoria

语言

  • 13 篇 英文
检索条件"主题词=Adversarial examples detection"
13 条 记 录,以下是1-10 订阅
排序:
DoFA: adversarial examples detection for SAR images by dual-objective feature attribution
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2024年 第PartC期255卷
作者: Zhang, Yu Zeng, Guo-Qiang Chen, Min-Rong Geng, Guang-Gang Weng, Jian Lu, Kang-Di Jinan Univ Coll Cyber Secur Guangzhou 510632 Peoples R China Jinan Univ Natl Joint Engn Res Ctr Network Secur Detect & Pro Guangzhou 510632 Peoples R China Wenzhou Univ Natl Local Joint Engn Lab Digitalize Elect Design Wenzhou 325035 Peoples R China South China Normal Univ Sch Comp Sci Guangzhou 510632 Peoples R China Zhejiang Univ Inst Cyber Syst & Control Natl Lab Ind Control Technol Hangzhou 310027 Peoples R China
Synthetic aperture radar (SAR) classification models based on convolutional neural networks have high accuracy, but the models' security is still threatened by adversarial examples. The high threat of adversarial ... 详细信息
来源: 评论
adversarial examples detection BASED ON ERROR LEVEL ANALYSIS AND SPACE MAPPING  47
ADVERSARIAL EXAMPLES DETECTION BASED ON ERROR LEVEL ANALYSIS...
收藏 引用
47th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Huang, Sizhao Wang, Shuai Chen, Jian Li, Guozhi Wang, Wenyi Univ Elect Sci & Technol China Sch Informat & Commun Engn Chengdu Peoples R China Univ Elect Sci & Technol China Yangtze Delta Reg Inst Chengdu Peoples R China
Deep neural network (DNN) shows impressive performance on many tasks but they usually suffer from adversarial examples with human eyes invisible slight perturbation. Such examples can not be distinguished by human but... 详细信息
来源: 评论
FEATURE DECOUPLING BASED adversarial examples detection METHOD FOR REMOTE SENSING SCENE CLASSIFICATION
FEATURE DECOUPLING BASED ADVERSARIAL EXAMPLES DETECTION METH...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Su, Yuru Mei, Shaohui Wan, Shuai Northwestern Polytech Univ Sch Elect & Informat Xian 710129 Peoples R China
Deep Neural Networks (DNNs) have demonstrated remarkable effectiveness in remote sensing (RS) image processing. However, they remain vulnerable to adversarial examples, which are generated by adding tiny but purposefu... 详细信息
来源: 评论
adversarial examples detection through the sensitivity in space mappings
收藏 引用
IET COMPUTER VISION 2020年 第5期14卷 201-213页
作者: Li, Xurong Ji, Shouling Ji, Juntao Ren, Zhenyu Wu, Chunming Li, Bo Wang, Ting Zhejiang Univ Dept Comp Sci & Technol Hangzhou Peoples R China Univ Illinois Dept Comp Sci Urbana IL USA Lehigh Univ Dept Comp Sci Bethlehem PA 18015 USA
adversarial examples (AEs) against deep neural networks (DNNs) raise wide concerns about the robustness of DNNs. Existing detection mechanisms are often limited to a given attack algorithm. Therefore, it is highly des... 详细信息
来源: 评论
Robust Person Re-identification with adversarial examples detection and Perturbation Extraction  5th
Robust Person Re-identification with Adversarial Examples De...
收藏 引用
5th Chinese Conference on Pattern Recognition and Computer Vision (PRCV)
作者: Chen, Qizheng Li, Ya Ma, Yuming Guangzhou Univ Guangzhou 510006 Peoples R China
Person re-identification (ReID) systems, those based on deep neural networks, have been shown their vulnerability to adversarial examples, i.e. images that only added slight perturbations. In previous defense methods,... 详细信息
来源: 评论
A Framework for Robust Deep Learning Models Against adversarial Attacks Based on a Protection Layer Approach
收藏 引用
IEEE ACCESS 2024年 12卷 17522-17540页
作者: Al-Andoli, Mohammed Nasser Tan, Shing Chiang Sim, Kok Swee Goh, Pey Yun Lim, Chee Peng Univ Teknikal Malaysia Melaka Fac Informat & Commun Technol Durian Tunggal 76100 Malaysia Multimedia Univ Fac Informat Sci & Technol Melaka 75450 Malaysia Multimedia Univ Fac Engn & Technol Melaka 75450 Malaysia Deakin Univ Inst Intelligent Syst Res & Innovat Waurn Ponds Vic 3216 Australia
Deep learning (DL) has demonstrated remarkable achievements in various fields. Nevertheless, DL models encounter significant challenges in detecting and defending against adversarial samples (AEs). These AEs are metic... 详细信息
来源: 评论
Hierarchical Distribution-aware Testing of Deep Learning
收藏 引用
ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY 2024年 第2期33卷 1-35页
作者: Huang, Wei Zhao, Xingyu Banks, Alec Cox, Victoria Huang, Xiaowei Purple Mt Labs Nanjing Peoples R China Univ Liverpool Liverpool Merseyside England Univ Warwick WMG Coventry W Midlands England Def Sci & Technol Lab Salisbury Wilts England
With its growing use in safety/security-critical applications, Deep Learning (DL) has raised increasing concerns regarding its dependability. In particular, DL has a notorious problem of lacking robustness. Input adde... 详细信息
来源: 评论
Increasing the Confidence of Deep Neural Networks by Coverage Analysis
收藏 引用
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2023年 第2期49卷 802-815页
作者: Rossolini, Giulio Biondi, Alessandro Buttazzo, Giorgio Scuola Superiore Sant Anna Dept Excellence Robot & AI I-56127 Pisa Italy
The great performance of machine learning algorithms and deep neural networks in several perception and control tasks is pushing the industry to adopt such technologies in safety-critical applications, as autonomous r... 详细信息
来源: 评论
Detecting adversarial examples via Reconstruction-based Semantic Inconsistency  24
Detecting Adversarial Examples via Reconstruction-based Sema...
收藏 引用
ACM Turing Award Celebration Conference (ACM-TURC)
作者: Zhang, Chi Zhou, Wenbo Zhang, Kui Zhang, Jie Zhang, Weiming Yu, Nenghai Univ Sci & Technol China Hefei Peoples R China Nanyang Technol Univ Singapore Singapore
adversarial attacks have been demonstrated a huge threat to the field of artificial intelligence security. To address it, adversarial training is proposed, but it requires a high computation cost and will degrade the ... 详细信息
来源: 评论
A Novel adversarial detection Method for UAV Vision Systems via Attribution Maps
收藏 引用
DRONES 2023年 第12期7卷
作者: Zhang, Zhun Liu, Qihe Wu, Chunjiang Zhou, Shijie Yan, Zhangbao Univ Elect Sci & Technol China Sch Informat & Software Engn Chengdu 610054 Peoples R China
With the rapid advancement of unmanned aerial vehicles (UAVs) and the Internet of Things (IoTs), UAV-assisted IoTs has become integral in areas such as wildlife monitoring, disaster surveillance, and search and rescue... 详细信息
来源: 评论