咨询与建议

限定检索结果

文献类型

  • 18 篇 会议
  • 17 篇 期刊文献

馆藏范围

  • 35 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 33 篇 工学
    • 16 篇 计算机科学与技术...
    • 12 篇 电气工程
    • 11 篇 测绘科学与技术
    • 5 篇 环境科学与工程(可...
    • 5 篇 软件工程
    • 4 篇 信息与通信工程
    • 3 篇 机械工程
    • 3 篇 航空宇航科学与技...
    • 2 篇 光学工程
    • 2 篇 仪器科学与技术
    • 2 篇 控制科学与工程
    • 1 篇 网络空间安全
  • 10 篇 理学
    • 6 篇 地球物理学
    • 3 篇 物理学
    • 1 篇 系统科学
  • 8 篇 医学
    • 8 篇 临床医学
  • 1 篇 农学
    • 1 篇 农业资源与环境
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 35 篇 aerial image cla...
  • 7 篇 deep learning
  • 7 篇 remote sensing
  • 3 篇 feature extracti...
  • 2 篇 self-supervised ...
  • 2 篇 gabor-gist descr...
  • 2 篇 uav
  • 2 篇 emergency respon...
  • 2 篇 genetic algorith...
  • 2 篇 computer vision
  • 2 篇 fuzzy clustering
  • 2 篇 training
  • 2 篇 supervised learn...
  • 2 篇 convolutional ne...
  • 1 篇 quality model
  • 1 篇 texture-based de...
  • 1 篇 fuzzy logic
  • 1 篇 vegetation mappi...
  • 1 篇 intrusion detect...
  • 1 篇 on-device infere...

机构

  • 2 篇 univ banja luka ...
  • 1 篇 information tech...
  • 1 篇 univ calif river...
  • 1 篇 univ alicante au...
  • 1 篇 china satellite ...
  • 1 篇 flame univ flame...
  • 1 篇 beijing inst spa...
  • 1 篇 beijing institut...
  • 1 篇 univ maryland de...
  • 1 篇 pimpri chinchwad...
  • 1 篇 qingdao univ tec...
  • 1 篇 king khalid univ...
  • 1 篇 washington state...
  • 1 篇 princess nourah ...
  • 1 篇 yango univ spati...
  • 1 篇 school of astron...
  • 1 篇 univ autonoma ba...
  • 1 篇 inst politecn na...
  • 1 篇 mohan babu univ ...
  • 1 篇 umm al qura univ...

作者

  • 4 篇 risojevic vladim...
  • 2 篇 stojnic vladan
  • 2 篇 li zhu
  • 2 篇 babic zdenka
  • 2 篇 york george
  • 1 篇 alonazi mohammed
  • 1 篇 gatta carlo
  • 1 篇 zhu haoran
  • 1 篇 cheng yuhu
  • 1 篇 ozturk ahmet saf...
  • 1 篇 camps-valls gust...
  • 1 篇 samanta riya
  • 1 篇 henry chris
  • 1 篇 chunxiao zhang
  • 1 篇 feng xingming
  • 1 篇 hong hanyu
  • 1 篇 liao rijun
  • 1 篇 zhou lijian
  • 1 篇 gallego antonio-...
  • 1 篇 song hanchen

语言

  • 33 篇 英文
  • 2 篇 其他
检索条件"主题词=Aerial Image Classification"
35 条 记 录,以下是1-10 订阅
排序:
Leveraging Cloud Resources for Distributed Training of Residual CNNs in aerial image classification
收藏 引用
IEEE ACCESS 2025年 13卷 31131-31139页
作者: Kumar, Shantanu Singh, Shruti Kumar Dewangan, Narendra Amazon Seattle WA 98109 USA Washington State Univ IREACH Seattle WA 98195 USA Univ Petr & Energy Studies Sch Comp Sci Dehra Dun 248007 Uttaranchal India
aerial image classification is crucial across multiple sectors, including environmental monitoring, agriculture, and urban planning. However, processing large-scale aerial imagery efficiently poses challenges in model... 详细信息
来源: 评论
aerial image classification by learning quality-aware spatial pyramid model
收藏 引用
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE 2020年 111卷 271-277页
作者: Huang, Fenghua Qi, Xinjiu Li, Chuanlin Hu, Wei Yango Univ Spatial Data Min & Applicat Engn Res Ctr Fujian Prov Univ Fuzhou 350015 Peoples R China Yango Univ Coll Artificial Intelligence Fuzhou 350015 Peoples R China Fuzhou Univ Digital China Res Inst Fujian Fuzhou 350108 Peoples R China
Recognizing aerial image categories is of great significance in computer vision, which is widely utilized in geological analysis, agricultural production and urban planning. However, conventional approaches cannot exp... 详细信息
来源: 评论
aerial image classification through Thin Lensless Camera  5
Aerial Image Classification through Thin Lensless Camera
收藏 引用
IEEE 5th International Conference on Multimedia Information Processing and Retrieval (MIPR)
作者: Henry, Chris Kathariya, Birendra Asif, M. Salman Li, Zhu York, George Univ Missouri Kansas City Kansas City MO 64110 USA Univ Calif Riverside Riverside CA 92521 USA US Air Force Acad Colorado Springs CO 80841 USA
FlatCam - a lensless camera, is characterized by its thin form factor, flexibility, and low power consumption. These are the ideal characteristics for imaging system in an Unmanned aerial Vehicle. FlatCam captures the... 详细信息
来源: 评论
aerial image classification with Label Splitting and Optimized Triplet Loss Learning
Aerial Image Classification with Label Splitting and Optimiz...
收藏 引用
IEEE International Conference on Visual Communications and image Processing (VCIP) - Visual Communications in the Era of AI and Limited Resources
作者: Liao, Rijun Li, Zhu Bhattacharyya, Shuvra S. York, George Univ Missouri Dept Comp Sci & Elect Engn Kansas City MO 64110 USA Univ Maryland Dept Elect & Comp Engn College Pk MD USA Univ Maryland UMIACS College Pk MD 20742 USA US Air Force Acad Dept Elect & Comp Engn Colorado Springs CO USA US Air Force Acad UAS Res Ctr Colorado Springs CO 80840 USA
With the development of airplane platforms, aerial image classification plays an important role in a wide range of remote sensing applications. The number of most of aerial image dataset is very limited compared with ... 详细信息
来源: 评论
aerial image classification Using Structural Texture Similarity
Aerial Image Classification Using Structural Texture Similar...
收藏 引用
IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)
作者: Risojevic, Vladimir Babic, Zdenka Univ Banja Luka Fac Elect Engn Banja Luka 78000 Bosnia & Herceg
There is an increasing need for algorithms for automatic analysis of remote sensing images and in this paper we address the problem of semantic classification of aerial images. For the task at hand we propose and eval... 详细信息
来源: 评论
aerial image classification based on Sparse Representation and Deep Belief Network  35
Aerial Image Classification based on Sparse Representation a...
收藏 引用
第35届中国控制会议
作者: SHI Tao ZHANG Chunlei REN Hongge LI Fujin LIU Weimin College of Electrical Engineering North China University of Science and Technology
Due to the rapid development of satellite sensor technology,a rich aerial image data set can be easily *** to efficiently classify and recognize the aerial image has become a critical *** this paper,we propose an aeri... 详细信息
来源: 评论
aerial image classification USING FUZZY MINER
AERIAL IMAGE CLASSIFICATION USING FUZZY MINER
收藏 引用
2nd International Conference on Advanced Computer Theory and Engineering (ICACTE 2009)
作者: Phokharatkul, Pisit Phaiboon, Supachai Mahidol Univ Fac Engn Dept Comp Engn Bangkok 10700 Thailand
aerial image classification is a method to classify and identify the objects on digital maps. Color, edge, shape, and texture have been extracted in order to classify objects on the aerial images. These feature attrib... 详细信息
来源: 评论
Unsupervised noise-robust feature extraction for aerial image classification
收藏 引用
Science China(Technological Sciences) 2020年 第8期63卷 1406-1415页
作者: LIANG Ye LU Shuai WENG Rui HAN ChengZhe LIU Ming School of Astronautics Harbin Institute of TechnologyHarbin 150001China Academy of Art Harbin University of Science and TechnologyHarbin 150001China Academy of Software and Microelectronics Harbin University of Science and TechnologyHarbin 150001China
The rich data provided by satellites and unmanned aerial vehicles bring opportunities to directly model aerial image features by extracting their spatial and structural *** convolutional autoencoders(CAEs)have been at... 详细信息
来源: 评论
Pelican optimization algorithm with convolutional-recurrent hop field neural network for unmanned aerial image classification model
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2024年 第33期83卷 79029页
作者: Geetha, Nakkala Sunitha, Gurram Mohan Babu Univ Sch Comp Tirupati AP India
Nowadays, unmanned aerial vehicles (UAVs) becomes more prominent because of their benefits namely versatile, inexpensive, scalable, and autonomous. The aerial image classification procedure has involved further attent... 详细信息
来源: 评论
Few-Shot aerial image classification with deep economic network and teacher knowledge
收藏 引用
INTERNATIONAL JOURNAL OF REMOTE SENSING 2022年 第13期43卷 5075-5099页
作者: Wang, Kang Wang, Xuesong Cheng, Yuhu China Univ Min & Technol Engn Res Ctr Intelligent Control Underground Spac Minist Educ 1 Daxue Rd Xuzhou 221116 Jiangsu Peoples R China China Univ Min & Technol Sch Informat & Control Engn Xuzhou Jiangsu Peoples R China
Deep learning has achieved excellent achievements and has become the mainstream in the field of aerial image classification. While obtaining remarkable success, deep learning-based approaches are notoriously dependent... 详细信息
来源: 评论