咨询与建议

限定检索结果

文献类型

  • 18 篇 会议
  • 17 篇 期刊文献

馆藏范围

  • 35 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 33 篇 工学
    • 16 篇 计算机科学与技术...
    • 12 篇 电气工程
    • 11 篇 测绘科学与技术
    • 5 篇 环境科学与工程(可...
    • 5 篇 软件工程
    • 4 篇 信息与通信工程
    • 3 篇 机械工程
    • 3 篇 航空宇航科学与技...
    • 2 篇 光学工程
    • 2 篇 仪器科学与技术
    • 2 篇 控制科学与工程
    • 1 篇 网络空间安全
  • 10 篇 理学
    • 6 篇 地球物理学
    • 3 篇 物理学
    • 1 篇 系统科学
  • 8 篇 医学
    • 8 篇 临床医学
  • 1 篇 农学
    • 1 篇 农业资源与环境
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 35 篇 aerial image cla...
  • 7 篇 deep learning
  • 7 篇 remote sensing
  • 3 篇 feature extracti...
  • 2 篇 self-supervised ...
  • 2 篇 gabor-gist descr...
  • 2 篇 uav
  • 2 篇 emergency respon...
  • 2 篇 genetic algorith...
  • 2 篇 computer vision
  • 2 篇 fuzzy clustering
  • 2 篇 training
  • 2 篇 supervised learn...
  • 2 篇 convolutional ne...
  • 1 篇 quality model
  • 1 篇 texture-based de...
  • 1 篇 fuzzy logic
  • 1 篇 vegetation mappi...
  • 1 篇 intrusion detect...
  • 1 篇 on-device infere...

机构

  • 2 篇 univ banja luka ...
  • 1 篇 information tech...
  • 1 篇 univ calif river...
  • 1 篇 univ alicante au...
  • 1 篇 china satellite ...
  • 1 篇 flame univ flame...
  • 1 篇 beijing inst spa...
  • 1 篇 beijing institut...
  • 1 篇 univ maryland de...
  • 1 篇 pimpri chinchwad...
  • 1 篇 qingdao univ tec...
  • 1 篇 king khalid univ...
  • 1 篇 washington state...
  • 1 篇 princess nourah ...
  • 1 篇 yango univ spati...
  • 1 篇 school of astron...
  • 1 篇 univ autonoma ba...
  • 1 篇 inst politecn na...
  • 1 篇 mohan babu univ ...
  • 1 篇 umm al qura univ...

作者

  • 4 篇 risojevic vladim...
  • 2 篇 stojnic vladan
  • 2 篇 li zhu
  • 2 篇 babic zdenka
  • 2 篇 york george
  • 1 篇 alonazi mohammed
  • 1 篇 gatta carlo
  • 1 篇 zhu haoran
  • 1 篇 cheng yuhu
  • 1 篇 ozturk ahmet saf...
  • 1 篇 camps-valls gust...
  • 1 篇 samanta riya
  • 1 篇 henry chris
  • 1 篇 chunxiao zhang
  • 1 篇 feng xingming
  • 1 篇 hong hanyu
  • 1 篇 liao rijun
  • 1 篇 zhou lijian
  • 1 篇 gallego antonio-...
  • 1 篇 song hanchen

语言

  • 33 篇 英文
  • 2 篇 其他
检索条件"主题词=Aerial Image Classification"
35 条 记 录,以下是11-20 订阅
排序:
Order based feature description for high-resolution aerial image classification
收藏 引用
OPTIK 2014年 第24期125卷 7239-7243页
作者: Huang, Wei Wu, Lingda Wei, Yingmei Song, Hanchen China Satellite Maritime Tracking & Control Dept Jiangyin 214431 Peoples R China Acad Equipment Key Lab Beijing 101416 Peoples R China Natl Univ Def Technol Sch Informat Syst & Management Changsha 410073 Peoples R China
We propose to use two intensity order-based descriptors for classification of high-resolution aerial images. By analyzing the characteristics of aerial images, it points out that the imagery does not have an absolute ... 详细信息
来源: 评论
Deformable patch-based-multi-layer perceptron Mixer model for forest fire aerial image classification
收藏 引用
JOURNAL OF APPLIED REMOTE SENSING 2023年 第2期17卷
作者: Mittal, Payal Sharma, Akashdeep Singh, Raman Univ Inst Engn & Technol Comp Sci & Engn Dept Chandigarh India Thapar Univ Comp Sci & Engn Dept Patiala India Univ West Scotland Cyber Secur Dept Paisley Lans Scotland
Unmanned aerial vehicles (UAVs) that include mounted camera sensors enable a wide range of remote sensing application deployments. Due to UAVs' capacity to explore distant locations such as woods, situational awar... 详细信息
来源: 评论
TinyML-On-The-Fly: Real-Time Low-Power and Low-Cost MCU-Embedded On-Device Computer Vision for aerial image classification
TinyML-On-The-Fly: Real-Time Low-Power and Low-Cost MCU-Embe...
收藏 引用
IEEE Space, Aerospace and Defence Conference (SPACE)
作者: Samanta, Riya Saha, Bidyut Ghosh, Soumya K. Indian Inst Technol Kharagpur Kharagpur W Bengal India
aerial image classification is essential to intelligent surveillance and monitoring systems. Traditional computer vision methods either uses computational offloading to high-end servers or edge devices. However, unman... 详细信息
来源: 评论
Archimedes Optimization with Deep Learning Based aerial image classification for Cybersecurity Enabled UAV Networks
收藏 引用
Computer Systems Science & Engineering 2023年 第11期47卷 2171-2185页
作者: Faris Kateb Mahmoud Ragab Information Technology Department Faculty of Computing and Information TechnologyKing Abdulaziz UniversityJeddah21589Saudi Arabia
The recent adoption of satellite technologies,unmanned aerial vehicles(UAVs)and 5G has encouraged telecom networking to evolve into more stable service to remote areas and render higher ***,security concerns with dron... 详细信息
来源: 评论
Gabor Descriptors for aerial image classification
Gabor Descriptors for Aerial Image Classification
收藏 引用
10th International Conference on Artificial Neural Networks and Genetic Algorithms
作者: Risojevic, Vladimir Momic, Snjezana Babic, Zdenka Univ Banja Luke Fac Elect Engn Banja Luke Bosnia & Herceg
The amount of remote sensed imagery that has become available by far surpasses the possibility of manual analysis. One of the most important tasks in the analysis of remote sensed images is land use classification. Th... 详细信息
来源: 评论
Generalized Category Discovery in aerial image classification via Slot Attention
收藏 引用
DRONES 2024年 第4期8卷 160-160页
作者: Zhou, Yifan Zhu, Haoran Zhang, Yan Liang, Shuo Wang, Yujing Yang, Wen Wuhan Univ Sch Elect Informat Wuhan 430072 Peoples R China CETC Res Inst 54 Shijiazhuang 050081 Peoples R China
aerial images record the dynamic Earth terrain, reflecting changes in land cover patterns caused by natural processes and human activities. Nonetheless, prevailing aerial image classification methodologies predominant... 详细信息
来源: 评论
A Lightweight Deep Learning Model for aerial image classification and Its Application to UAV-based Disaster Management
收藏 引用
Procedia Computer Science 2024年 246卷 2762-2771页
作者: Deng Xinjie Burhan Khan Fazal Ghaffar Yit Hong Choo Tao Zhou Institute for Intelligent Systems Research and Innovation (IISRI) Deakin University 75 Pigdons Road Waurn Ponds VIC 3216 Australia Chongqing Jianzhu College No.857 Lihuadadao Nanan Chongqing 400072 China
Unmanned aerial Vehicles (UAVs) play a pivotal role in disaster management and emergency response for ensuring safety of our society. In this respect, lightweight deep learning models are necessary for video and image... 详细信息
来源: 评论
Prairie Dog Optimization Algorithm with deep learning assisted based aerial image classification on UAV imagery
收藏 引用
HELIYON 2024年 第18期10卷 e37446页
作者: Alkhalifa, Amal K. Saeed, Muhammad Kashif Othman, Kamal M. Ebad, Shouki A. Alonazi, Mohammed Mohamed, Abdullah Princess Nourah bint Abdulrahman Univ Appl Coll Dept Comp Sci & Informat Technol POB 84428 Riyadh 11671 Saudi Arabia King Khalid Univ Appl Coll Mahayil Dept Comp Sci Abha Saudi Arabia Umm Al Qura Univ Coll Engn & Islamic Architecture Dept Elect Engn Mecca Saudi Arabia Northern Border Univ Fac Sci Dept Comp Sci Ar Ar 91431 Saudi Arabia Prince Sattam bin Abdulaziz Univ Coll Comp Engn & Sci Dept Informat Syst Al Kharj 16273 Saudi Arabia Future Univ Egypt Res Ctr New Cairo 11845 Egypt
This study presents a Prairie Dog Optimization Algorithm with a Deep learning-assisted aerial image classification Approach (PDODL-AICA) on UAV images. The PDODL-AICA technique exploits the optimal DL model for classi... 详细信息
来源: 评论
TinyEmergencyNet: a hardware-friendly ultra-lightweight deep learning model for aerial scene image classification
收藏 引用
JOURNAL OF REAL-TIME image PROCESSING 2024年 第2期21卷 51-51页
作者: Mogaka, Obed M. Zewail, Rami Inoue, Koji Sayed, Mohammed S. Egypt Japan Univ Sci & Technol E JUST Dept Elect & Commun Engn New Borg El Arab City 21934 Alexandria Egypt Egypt Japan Univ Sci & Technol E JUST Dept Comp Sci & Engn New Borg El Arab City 21934 Alexandria Egypt Kyushu Univ Dept Adv Informat Technol Nishi Ku Fukuoka 8190395 Japan Zagazig Univ Dept Elect & Commun Engn Zagazig Egypt
In the context of emergency response applications, real-time situational awareness is vital. Unmanned aerial vehicles (UAVs) with imagers have emerged as crucial tools for providing timely information in such scenario... 详细信息
来源: 评论
Evaluation of image Descriptors for Urban-Rural classification of aerial images  16
Evaluation of Image Descriptors for Urban-Rural Classificati...
收藏 引用
16th International Conference on New Trends in Intelligent Software Methodologies, Tools and Techniques (SoMeT)
作者: Cortes, Daniel Nakano, Mariko Koga, Hisashi Perez, Hector Inst Politecn Nacl Mexico City DF Mexico Univ Electrocommun Beijing Peoples R China
In this paper, fourteen descriptors are evaluated for urban-rural classification of aerial images. Among these fourteen descriptors, eleven descriptors consist of texture-based, color-based con combination of these tw... 详细信息
来源: 评论