咨询与建议

限定检索结果

文献类型

  • 25 篇 期刊文献
  • 9 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 35 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 33 篇 工学
    • 17 篇 测绘科学与技术
    • 12 篇 电气工程
    • 11 篇 计算机科学与技术...
    • 9 篇 环境科学与工程(可...
    • 3 篇 控制科学与工程
    • 2 篇 软件工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 航空宇航科学与技...
  • 19 篇 医学
    • 19 篇 临床医学
  • 15 篇 理学
    • 14 篇 地球物理学
    • 1 篇 地理学
  • 1 篇 农学
    • 1 篇 农业资源与环境
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 35 篇 aerial object de...
  • 10 篇 object detection
  • 7 篇 deep learning
  • 5 篇 detectors
  • 4 篇 task analysis
  • 4 篇 oriented object ...
  • 4 篇 feature extracti...
  • 3 篇 transformer
  • 3 篇 shape
  • 3 篇 convolutional ne...
  • 2 篇 vision transform...
  • 2 篇 deep compression
  • 2 篇 probability dist...
  • 2 篇 meteorology
  • 2 篇 location awarene...
  • 2 篇 deep convolution...
  • 2 篇 visualization
  • 2 篇 remote sensing
  • 2 篇 gaussian distrib...
  • 2 篇 lightweight netw...

机构

  • 3 篇 xidian univ join...
  • 3 篇 beijing inst tec...
  • 2 篇 xidian univ key ...
  • 2 篇 univ sains malay...
  • 1 篇 nanjing univ pos...
  • 1 篇 beijing inst tec...
  • 1 篇 sapienza univ de...
  • 1 篇 anhui univ sch c...
  • 1 篇 guangdong polyte...
  • 1 篇 beijing inst tec...
  • 1 篇 xidian univ stat...
  • 1 篇 fraunhofer iosb ...
  • 1 篇 shanghai univ pe...
  • 1 篇 fraunhofer gesel...
  • 1 篇 xian polytech un...
  • 1 篇 minist educ chin...
  • 1 篇 univ malaya fac ...
  • 1 篇 karlsruhe inst t...
  • 1 篇 anhui prov key l...
  • 1 篇 anhui univ sci &...

作者

  • 4 篇 hou biao
  • 4 篇 ren bo
  • 4 篇 wu zitong
  • 4 篇 li zhonghua
  • 3 篇 jing donglin
  • 3 篇 jiao licheng
  • 2 篇 guo xianpeng
  • 2 篇 junos mohamad ha...
  • 2 篇 ren zhongle
  • 2 篇 he xiaohui
  • 2 篇 han yuqi
  • 2 篇 deng chenwei
  • 2 篇 lu guanlin
  • 2 篇 wang jinkang
  • 2 篇 khairuddin anis ...
  • 2 篇 ju yakun
  • 2 篇 yang chen
  • 2 篇 luo bin
  • 2 篇 shao faming
  • 2 篇 wang qiang

语言

  • 35 篇 英文
检索条件"主题词=Aerial Object Detection"
35 条 记 录,以下是21-30 订阅
排序:
An Oriented object Detector for Hazy Remote Sensing Images
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2024年 62卷 1页
作者: Liu, Bo Chen, Si-Bao Wang, Jia-Xin Tang, Jin Luo, Bin Anhui Univ Sch Comp Sci & Technol Anhui Prov Key Lab Multimodal Cognit Computat MOE Key Lab ICSPIMIS Lab Anhui ProvZenmorn AHU A Hefei 230601 Peoples R China Anhui Univ Sci & Technol Huainan 232002 Peoples R China
Currently, a lot of work is focused on aerial object detection and has achieved good results. Though these methods have achieved promising results on the conventional datasets, it is still challenging to locate object... 详细信息
来源: 评论
Rebalancing Gaussian Location Loss for High-Precision detection on Remote Sensing Images
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2024年 62卷 1页
作者: Li, Zhonghua Hou, Biao Wu, Zitong Guo, Xianpeng Ren, Bo Ren, Zhongle Yang, Chen Jiao, Licheng Minist Educ China Key Lab Intelligent Percept & Image Understanding Xian Peoples R China Xidian Univ Joint Int Res Lab Intelligent Percept & Computat Xian 710071 Peoples R China
aerial image objects are usually orientated arbitrarily, with a large scale range, and densely distributed. Traditional horizontal bounding box (HBB) detectors tend to filter out densely distributed objects leading to... 详细信息
来源: 评论
MStrans: Multiscale Vision Transformer for aerial objects detection
收藏 引用
IEEE ACCESS 2022年 10卷 75971-75985页
作者: Lu, Guanlin He, Xiaohui Wang, Qiang Shao, Faming Wang, Jinkang Hao, Likai PLA Army Engn Univ Dept Mech Engn Coll Field Engn Nanjing 210007 Peoples R China
Detecting objects in aerial images is a challenging task due to the large-scale variations and arbitrary orientations with tiny instances. A new multi-scale transformer-based aerial objects detector called MStrans is ... 详细信息
来源: 评论
Zoom-and-Reasoning: Joint Foreground Zoom and Visual-Semantic Reasoning detection Network for aerial Images
收藏 引用
IEEE SIGNAL PROCESSING LETTERS 2022年 29卷 2572-2576页
作者: Ge, Zuhao Qi, Lizhe Wang, Yuzheng Sun, Yunquan Fudan Univ Acad Engn & Technol Shanghai 200433 Peoples R China
aerial image object detection remains rather challenging, due to the small object gathering and confusion of inter-class similarities and intra-class diversity. Confronting such challenges, we propose a two-stage fram... 详细信息
来源: 评论
LENet: Lightweight and Effective Detector for aerial object
收藏 引用
UNMANNED SYSTEMS 2024年 第6期12卷 1105-1121页
作者: Zhou, Xunkuai Li, Li Chen, Ben M. Tongji Univ Sch Elect & Informat Engn Shanghai Peoples R China Chinese Univ Hong Kong Dept Mech & Automat Engn Hong Kong Peoples R China
aerial object detection is crucial in various computer vision tasks, including video monitoring, early warning systems, and visual tracking. While current methods can accurately detect normal-sized objects, they face ... 详细信息
来源: 评论
DSENET: AN object-WISE DENSITY-INFORMED COARSE-TO-FINE object DETECTOR FOR aerial IMAGE
DSENET: AN OBJECT-WISE DENSITY-INFORMED COARSE-TO-FINE OBJEC...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Jiang, Haoran Wang, Xiangjie Zhang, Junjie Zhang, Jian Zeng, Dan Shanghai Univ Shanghai Peoples R China Univ Technol Sydney Sydney NSW Australia
object detection in aerial images remains formidable due to substantial object scale variations, and uneven object distributions. Previous methods widely adopt the coarse-tofine methodology where detectors focus on la... 详细信息
来源: 评论
Active Interactive Labelling Massive Samples for object detection  23
Active Interactive Labelling Massive Samples for Object Dete...
收藏 引用
11th ACM Symposium on Spatial User Interaction (SUI)
作者: Zhang, Jingwei Zhang, Mingguang Guo, Yi Qiu, Mengyu Nanjing Univ Aeronaut & Astronaut Coll Comp Sci & Technol Nanjing Peoples R China Chinese Acad Sci Xian Inst Opt & Precis Mech Xian Peoples R China
aerial object detection is the process of detecting objects in remote sensing images, such as aerial or satellite imagery. However, due to the unique characteristics and challenges of remote sensing images, such as la... 详细信息
来源: 评论
FastAER Det: Fast aerial Embedded Real-Time detection
收藏 引用
REMOTE SENSING 2021年 第16期13卷 3088-3088页
作者: Wolf, Stefan Sommer, Lars Schumann, Arne Fraunhofer IOSB Inst Optron Syst Technol & Image Exploitat Fraunhoferstr 1 D-76131 Karlsruhe Germany Karlsruhe Inst Technol KIT Vis & Fus Lab Technologiefabrik Haid und Neu Str 7 D-76131 Karlsruhe Germany Fraunhofer Gesell Forderung Angewandten Forsch eV Fraunhofer Ctr Machine Learning Hansastr 27 c D-80686 Munich Germany
Automated detection of objects in aerial imagery is the basis for many applications, such as search and rescue operations, activity monitoring or mapping. However, in many cases it is beneficial to employ a detector o... 详细信息
来源: 评论
SAFDet: A Semi-Anchor-Free Detector for Effective detection of Oriented objects in aerial Images
收藏 引用
REMOTE SENSING 2020年 第19期12卷 3225-3225页
作者: Fang, Zhenyu Ren, Jinchang Sun, He Marshall, Stephen Han, Junwei Zhao, Huimin Guangdong Polytech Normal Univ Sch Comp Sci Guangzhou 510665 Peoples R China Univ Strathclyde Dept Elect & Elect Engn Glasgow G1 1XQ Lanark Scotland Beijing Inst Technol Sch Automat Beijing 100081 Peoples R China Northwestern Polytech Univ Sch Automat Xian 710109 Peoples R China
An oriented bounding box (OBB) is preferable over a horizontal bounding box (HBB) in accurate object detection. Most of existing works utilize a two-stage detector for locating the HBB and OBB, respectively, which hav... 详细信息
来源: 评论
DCEF2-YOLO: aerial detection YOLO with Deformable Convolution-Efficient Feature Fusion for Small Target detection
收藏 引用
REMOTE SENSING 2024年 第6期16卷 1071页
作者: Shin, Yeonha Shin, Heesub Ok, Jaewoo Back, Minyoung Youn, Jaehyuk Kim, Sungho Yeungnam Univ Dept Elect Engn Adv Visual Intelligence Lab 280 Daehak Ro Gyongsan 38541 South Korea LIG Nex1 Co Ltd Yongin 16911 South Korea
Deep learning technology for real-time small object detection in aerial images can be used in various industrial environments such as real-time traffic surveillance and military reconnaissance. However, detecting smal... 详细信息
来源: 评论