咨询与建议

限定检索结果

文献类型

  • 47 篇 期刊文献
  • 22 篇 会议

馆藏范围

  • 69 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 66 篇 工学
    • 50 篇 电气工程
    • 35 篇 计算机科学与技术...
    • 13 篇 软件工程
    • 11 篇 信息与通信工程
    • 6 篇 控制科学与工程
    • 5 篇 测绘科学与技术
    • 4 篇 仪器科学与技术
    • 1 篇 机械工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 交通运输工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 生物医学工程(可授...
  • 20 篇 理学
    • 12 篇 物理学
    • 5 篇 数学
    • 4 篇 地球物理学
    • 1 篇 统计学(可授理学、...
  • 17 篇 医学
    • 17 篇 临床医学
    • 1 篇 特种医学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 69 篇 algorithm unroll...
  • 15 篇 deep learning
  • 11 篇 optimization
  • 7 篇 interpretable ne...
  • 7 篇 signal processin...
  • 6 篇 feature extracti...
  • 5 篇 compressed sensi...
  • 5 篇 encoding
  • 5 篇 training
  • 4 篇 imaging
  • 4 篇 inverse problems
  • 4 篇 image deblurring
  • 4 篇 iterative method...
  • 4 篇 graph neural net...
  • 4 篇 sparse coding
  • 4 篇 learning to opti...
  • 3 篇 fault diagnosis
  • 3 篇 deep neural netw...
  • 3 篇 interpretable de...
  • 3 篇 graph signal pro...

机构

  • 4 篇 xi an jiao tong ...
  • 3 篇 nanyang technol ...
  • 2 篇 weizmann inst sc...
  • 2 篇 chinese acad sci...
  • 2 篇 univ chinese aca...
  • 2 篇 china univ geosc...
  • 2 篇 xi an jiao tong ...
  • 2 篇 xi an jiao tong ...
  • 2 篇 univ elect sci &...
  • 2 篇 dongguk univ dep...
  • 2 篇 penn state univ ...
  • 2 篇 peking univ sch ...
  • 2 篇 mitsubishi elect...
  • 2 篇 univ hong kong d...
  • 2 篇 shanghaitech uni...
  • 2 篇 xi an jiao tong ...
  • 2 篇 china univ geosc...
  • 1 篇 rice univ dept e...
  • 1 篇 kyungpook natl u...
  • 1 篇 indian inst sci ...

作者

  • 8 篇 eldar yonina c.
  • 5 篇 wang shibin
  • 5 篇 chen xuefeng
  • 4 篇 yan ruqiang
  • 4 篇 monga vishal
  • 3 篇 lee chul
  • 3 篇 qin fuhua
  • 3 篇 halimi abderrahi...
  • 3 篇 koo jakeoung
  • 3 篇 li yuelong
  • 3 篇 mclaughlin steph...
  • 3 篇 chen siheng
  • 3 篇 zhao zhibin
  • 2 篇 wotao yin
  • 2 篇 jialin liu
  • 2 篇 song pingfan
  • 2 篇 zhang haichuan
  • 2 篇 chen bin
  • 2 篇 dragotti pier lu...
  • 2 篇 chan stanley h.

语言

  • 68 篇 英文
检索条件"主题词=Algorithm unrolling"
69 条 记 录,以下是11-20 订阅
排序:
Efficient and Model-Based Infrared and Visible Image Fusion via algorithm unrolling
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2022年 第3期32卷 1186-1196页
作者: Zhao, Zixiang Xu, Shuang Zhang, Jiangshe Liang, Chengyang Zhang, Chunxia Liu, Junmin Xi An Jiao Tong Univ Sch Math & Stat Xian 710049 Peoples R China
Infrared and visible image fusion (IVIF) expects to obtain images that retain thermal radiation information from infrared images and texture details from visible images. In this paper, a model-based convolutional neur... 详细信息
来源: 评论
Efficient and Interpretable Deep Blind Image Deblurring Via algorithm unrolling
收藏 引用
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2020年 6卷 666-681页
作者: Li, Yuelong Tofighi, Mohammad Geng, Junyi Monga, Vishal Eldar, Yonina C. Penn State Univ Dept Elect Engn University Pk PA 16802 USA Penn State Univ Dept Aerosp Engn University Pk PA 16802 USA Weizmann Inst Sci Fac Math & Comp Sci Dept Elect Engn IL-76100 Rehovot Israel
Blind image deblurring remains a topic of enduring interest. Learning based approaches, especially those that employ neural networks have emerged to complement traditional model based methods and in many cases achieve... 详细信息
来源: 评论
Adaptive Low-Light Image Enhancement Optimization Framework with algorithm unrolling  6th
Adaptive Low-Light Image Enhancement Optimization Framework ...
收藏 引用
6th Chinese Conference on Pattern Recognition and Computer Vision (PRCV)
作者: He, Qichang Liang, Lingyu Xiao, Wocheng Liang, Mingju South China Univ Technol Guangzhou Peoples R China Guangdong Artificial Intelligence & Digital Econ Pazhou Lab Guangzhou Guangzhou Peoples R China Southeast Univ Key Lab Comp Network & Informat Integrat Minist Educ Nanjing Peoples R China Guangdong Foshan Lianchuang Grad Sch Engn Foshan Peoples R China
Images captured in a dark environment may cause low visibility and lose significant details leading to poor performance of vision-based recognition systems. Recently, deep learning-based methods have been proposed for... 详细信息
来源: 评论
PHOTON-LIMITED DEBLURRING USING algorithm unrolling  47
PHOTON-LIMITED DEBLURRING USING ALGORITHM UNROLLING
收藏 引用
47th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Sanghvi, Yash Gnanasambandan, Abhiram Chan, Stanley H. Purdue Univ Sch Elect & Comp Engn 465 Northwestern Ave W Lafayette IN 47907 USA
Image deblurring in a photon-limited condition is ubiquitous in a variety of low-light applications such as photography, microscopy and astronomy. However, the presence of photon shot noise due to a low-illumination a... 详细信息
来源: 评论
Neural Sum Rate Maximization for AI-Native Wireless Networks: Alternating Direction Method of Multipliers Framework and algorithm unrolling  2
Neural Sum Rate Maximization for AI-Native Wireless Networks...
收藏 引用
2nd International Workshop on Networked AI Systems (NetAISys)
作者: Chen, Siya Tan, Chee Wei City Univ Hong Kong Hong Kong Peoples R China Nanyang Technol Univ Nanyang Ave Singapore Singapore
In this paper, we introduce Neural Sum Rate Maximization to address nonconvex problems in maximizing sum rates with a total power constraint for downlink multiple access. We combine the optimization-theoretic methods ... 详细信息
来源: 评论
Non-Uniform Blind Image Deblurring Using an algorithm unrolling Neural Network  14
Non-Uniform Blind Image Deblurring Using an Algorithm Unroll...
收藏 引用
14th IEEE Image, Video, and Multidimensional Signal Processing Workshop (IVMSP)
作者: Richmond, Greig Cole-Rhodes, Arlene Morgan State Univ Baltimore MD 21239 USA
In this work we develop a compact neural network that is designed to deblur images that have been affected by a non-uniform blur. We develop this network by unrolling a traditional iterative image deblurring algorithm... 详细信息
来源: 评论
Interpretable Neural Network via algorithm unrolling for Mechanical Fault Diagnosis
收藏 引用
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2022年 71卷 1页
作者: An, Botao Wang, Shibin Zhao, Zhibin Qin, Fuhua Yan, Ruqiang Chen, Xuefeng Xi An Jiao Tong Univ State Key Lab Mfg Syst Engn Xian 710049 Peoples R China
Artificial neural network (ANN) has achieved great success in mechanical fault diagnosis and has been widely used. However, traditional ANN is still opaque in terms of interpretability, making it difficult for users t... 详细信息
来源: 评论
Multi-frequency progressive refinement for learned inverse scattering
收藏 引用
JOURNAL OF COMPUTATIONAL PHYSICS 2025年 527卷
作者: Melia, Owen Tsang, Olivia Charisopoulos, Vasileios Khoo, Yuehaw Hoskins, Jeremy Willett, Rebecca Univ Chicago Dept Comp Sci Chicago IL 60637 USA Univ Chicago Data Sci Inst Chicago IL 60637 USA Univ Chicago Dept Stat Computat & Appl Math Chicago IL 60637 USA
Interpreting scattered acoustic and electromagnetic wave patterns is a computational task that enables remote imaging in a number of important applications, including medical imaging, geophysical exploration, sonar an... 详细信息
来源: 评论
Self-supervised Scalable Deep Compressed Sensing
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTER VISION 2025年 第2期133卷 688-723页
作者: Chen, Bin Zhang, Xuanyu Liu, Shuai Zhang, Yongbing Zhang, Jian Peking Univ Sch Elect & Comp Engn Shenzhen Peoples R China Tsinghua Univ Shenzhen Int Grad Sch Shenzhen Peoples R China Harbin Inst Technol Shenzhen Shenzhen Peoples R China
Compressed sensing (CS) is a promising tool for reducing sampling costs. Current deep neural network (NN)-based CS approaches face the challenges of collecting labeled measurement-ground truth (GT) data and generalizi... 详细信息
来源: 评论
A model-based deep learning approach to interpretable impact force localization and reconstruction
收藏 引用
MECHANICAL SYSTEMS AND SIGNAL PROCESSING 2025年 224卷
作者: Zhou, Rui Qiao, Baijie Jiang, Liangliang Cheng, Wei Yang, Xiuyue Wang, Yanan Chen, Xuefeng Xi An Jiao Tong Univ Sch Mech Engn Xian 710049 Peoples R China Xi An Jiao Tong Univ Natl Key Lab Aerosp Power Syst & Plasma Technol Xian 710049 Peoples R China Beijing Inst Astronaut Syst Engn Beijing 10076 Peoples R China
Model-based and deep learning-based methods have been widely studied for force identification. However, model-based methods usually have high computational complexity and face challenges in parameter setting, while th... 详细信息
来源: 评论