咨询与建议

限定检索结果

文献类型

  • 47 篇 期刊文献
  • 22 篇 会议

馆藏范围

  • 69 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 66 篇 工学
    • 50 篇 电气工程
    • 35 篇 计算机科学与技术...
    • 13 篇 软件工程
    • 11 篇 信息与通信工程
    • 6 篇 控制科学与工程
    • 5 篇 测绘科学与技术
    • 4 篇 仪器科学与技术
    • 1 篇 机械工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 交通运输工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 生物医学工程(可授...
  • 20 篇 理学
    • 12 篇 物理学
    • 5 篇 数学
    • 4 篇 地球物理学
    • 1 篇 统计学(可授理学、...
  • 17 篇 医学
    • 17 篇 临床医学
    • 1 篇 特种医学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 69 篇 algorithm unroll...
  • 15 篇 deep learning
  • 11 篇 optimization
  • 7 篇 interpretable ne...
  • 7 篇 signal processin...
  • 6 篇 feature extracti...
  • 5 篇 compressed sensi...
  • 5 篇 encoding
  • 5 篇 training
  • 4 篇 imaging
  • 4 篇 inverse problems
  • 4 篇 image deblurring
  • 4 篇 iterative method...
  • 4 篇 graph neural net...
  • 4 篇 sparse coding
  • 4 篇 learning to opti...
  • 3 篇 fault diagnosis
  • 3 篇 deep neural netw...
  • 3 篇 interpretable de...
  • 3 篇 graph signal pro...

机构

  • 4 篇 xi an jiao tong ...
  • 3 篇 nanyang technol ...
  • 2 篇 weizmann inst sc...
  • 2 篇 chinese acad sci...
  • 2 篇 univ chinese aca...
  • 2 篇 china univ geosc...
  • 2 篇 xi an jiao tong ...
  • 2 篇 xi an jiao tong ...
  • 2 篇 univ elect sci &...
  • 2 篇 dongguk univ dep...
  • 2 篇 penn state univ ...
  • 2 篇 peking univ sch ...
  • 2 篇 mitsubishi elect...
  • 2 篇 univ hong kong d...
  • 2 篇 shanghaitech uni...
  • 2 篇 xi an jiao tong ...
  • 2 篇 china univ geosc...
  • 1 篇 rice univ dept e...
  • 1 篇 kyungpook natl u...
  • 1 篇 indian inst sci ...

作者

  • 8 篇 eldar yonina c.
  • 5 篇 wang shibin
  • 5 篇 chen xuefeng
  • 4 篇 yan ruqiang
  • 4 篇 monga vishal
  • 3 篇 lee chul
  • 3 篇 qin fuhua
  • 3 篇 halimi abderrahi...
  • 3 篇 koo jakeoung
  • 3 篇 li yuelong
  • 3 篇 mclaughlin steph...
  • 3 篇 chen siheng
  • 3 篇 zhao zhibin
  • 2 篇 wotao yin
  • 2 篇 jialin liu
  • 2 篇 song pingfan
  • 2 篇 zhang haichuan
  • 2 篇 chen bin
  • 2 篇 dragotti pier lu...
  • 2 篇 chan stanley h.

语言

  • 68 篇 英文
  • 1 篇 其他
检索条件"主题词=Algorithm unrolling"
69 条 记 录,以下是21-30 订阅
排序:
Theory and fast learned solver for ℓ1-TV regularization
收藏 引用
INVERSE PROBLEMS 2025年 第1期41卷
作者: Liu, Xinling Wang, Jianjun Jin, Bangti Southwest Univ Sch Math & Stat Chongqing 400715 Peoples R China China West Normal Univ China West Normal Univ Sichuan Prov Sch Math & Informat Key Lab Optimizat Theory & Applicat Nanchong 637009 Peoples R China Chinese Univ Hong Kong Dept Math Shatin Hong Kong Peoples R China
The & ell;(1) and total variation (TV) penalties have been used successfully in many areas, and the combination of the & ell;(1) and TV penalties can lead to further improved performance. In this work, we inve... 详细信息
来源: 评论
A model-based deep learning approach to interpretable impact force localization and reconstruction
收藏 引用
MECHANICAL SYSTEMS AND SIGNAL PROCESSING 2025年 224卷
作者: Zhou, Rui Qiao, Baijie Jiang, Liangliang Cheng, Wei Yang, Xiuyue Wang, Yanan Chen, Xuefeng Xi An Jiao Tong Univ Sch Mech Engn Xian 710049 Peoples R China Xi An Jiao Tong Univ Natl Key Lab Aerosp Power Syst & Plasma Technol Xian 710049 Peoples R China Beijing Inst Astronaut Syst Engn Beijing 10076 Peoples R China
Model-based and deep learning-based methods have been widely studied for force identification. However, model-based methods usually have high computational complexity and face challenges in parameter setting, while th... 详细信息
来源: 评论
Sparse Bayesian Learning Unfolding Network for Efficient DoA Estimation in Low SNR
收藏 引用
IEEE Transactions on Vehicular Technology 2025年
作者: Lv, Liujie Wu, Sheng Su, Yi Jiang, Chunxiao Kuang, Linling Beijing University of Posts and Telecommunications School of Information and Communication Engineering Beijing100876 China Beijing Institute of Remote Sensing Equipment China Tsinghua University Tsinghua Space Center the Beijing National Research Center for Information Science and Technology Beijing100084 China
Compressive sensing (CS) algorithms have demonstrated superior direction-of-arrival (DoA) estimation accuracy in the low signal-to-noise ratio (SNR) regime by exploiting inherent angular sparsity. However, traditional... 详细信息
来源: 评论
A Bayesian Based Deep unrolling algorithm for Single-Photon Lidar Systems
收藏 引用
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 2022年 第4期16卷 762-774页
作者: Koo, Jakeoung Halimi, Abderrahim McLaughlin, Stephen Heriot Watt Univ Sch Engn & Phys Sci Edinburgh EH14 4AS Midlothian Scotland
Deploying 3D single-photon Lidar imaging in real world applications presents multiple challenges including imaging in high noise environments. Several algorithms have been proposed to address these issues based on sta... 详细信息
来源: 评论
GSISTA-Net: generalized structure ISTA networks for image compressed sensing based on optimized unrolling algorithm
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2024年 第34期83卷 80373-80387页
作者: Zeng, Chunyan Yu, Yan Wang, Zhifeng Xia, Shiyan Cui, Hao Wan, Xiangkui Hubei Univ Technol Hubei Key Lab High Efficiency Utilizat Solar Energ Nanli Rd Wuhan 430068 Peoples R China Cent China Normal Univ Dept Digital Media Technol Luoyu Rd Wuhan 430079 Peoples R China
Image compressed sensing technology, particularly algorithm unrolling networks, has garnered significant attention in the field of compressed sensing due to their interpretability and high performance. However, simila... 详细信息
来源: 评论
Deep, Convergent, Unrolled Half-Quadratic Splitting for Image Deconvolution
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING
收藏 引用
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2024年 10卷 574-588页
作者: Zhao, Yanan Li, Yuelong Zhang, Haichuan Monga, Vishal Eldar, Yonina C. Nanyang Technol Univ Sch Elect & Elect Engn Singapore 639798 Singapore Amazon Lab 126 San Jose CA 94089 USA Penn State Univ Dept Elect Engn State Coll PA 16801 USA Weizmann Inst Sci Fac Math & Comp Sci Dept Elect Engn IL-7610001 Rehovot Israel
In recent years, algorithm unrolling has emerged as a powerful technique for designing interpretable neural networks based on iterative algorithms. Imaging inverse problems have particularly benefited from unrolling-b... 详细信息
来源: 评论
Robust PCA unrolling Network for Super-Resolution Vessel Extraction in X-Ray Coronary Angiography
收藏 引用
IEEE TRANSACTIONS ON MEDICAL IMAGING 2022年 第11期41卷 3087-3098页
作者: Qin, Binjie Mao, Haohao Liu, Yiming Zhao, Jun Lv, Yisong Zhu, Yueqi Ding, Song Chen, Xu Shanghai Jiao Tong Univ Sch Biomed Engn Shanghai 200240 Peoples R China Shanghai Jiao Tong Univ Sch Continuing Educ Shanghai 200240 Peoples R China Shanghai Jiao Tong Univ Shanghai Jiao Tong Univ Affiliated Peoples Hosp 6 Dept Radiol Shanghai 200233 Peoples R China Shanghai Jiao Tong Univ Ren Ji Hosp Sch Med Dept Cardiol Shanghai 200127 Peoples R China Univ Calif Riverside Ctr Adv Neuroimaging Riverside CA 92521 USA
Although robust PCA has been increasingly adopted to extract vessels from X-ray coronary angiography (XCA) images, challenging problems such as inefficient vessel-sparsity modelling, noisy and dynamic background artef... 详细信息
来源: 评论
Learning to Optimize: A Primer and A Benchmark
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2022年 第1期23卷 1-59页
作者: Chen, Tianlong Chen, Xiaohan Chen, Wuyang Wang, Zhangyang Heaton, Howard Liu, Jialin Yin, Wotao Engn Univ Texas Austin Dept Elect & Comp Austin TX 78712 USA Typal LLC Typal Res Los Angeles CA 90064 USA Damo Acad Decis Intelligence Lab Alibaba US Bellevue WA 98004 USA
Learning to optimize (L2O) is an emerging approach that leverages machine learning to develop optimization methods, aiming at reducing the laborious iterations of hand engi-neering. It automates the design of an optim... 详细信息
来源: 评论
Attention-Guided Low-Rank Tensor Completion
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2024年 第12期46卷 9818-9833页
作者: Truong Thanh Nhat Mai Lam, Edmund Y. Lee, Chul Dongguk Univ Dept Multimedia Engn Seoul 04620 South Korea Univ Hong Kong Dept Elect & Elect Engn Hong Kong Peoples R China
Low-rank tensor completion (LRTC) aims to recover missing data of high-dimensional structures from a limited set of observed entries. Despite recent significant successes, the original structures of data tensors are s... 详细信息
来源: 评论
Robust Stochastically-Descending Unrolled Networks
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2024年 72卷 5484-5499页
作者: Hadou, Samar Naderializadeh, Navid Ribeiro, Alejandro Univ Penn Dept Elect & Syst Engn Philadelphia PA 19104 USA Duke Univ Dept Biostat & Bioinformat Durham NC 27705 USA
Deep unrolling, or unfolding, is an emerging learning-to-optimize method that unrolls a truncated iterative algorithm in the layers of a trainable neural network. However, the convergence guarantees and generalizabili... 详细信息
来源: 评论