咨询与建议

限定检索结果

文献类型

  • 47 篇 期刊文献
  • 22 篇 会议

馆藏范围

  • 69 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 66 篇 工学
    • 50 篇 电气工程
    • 35 篇 计算机科学与技术...
    • 13 篇 软件工程
    • 11 篇 信息与通信工程
    • 6 篇 控制科学与工程
    • 5 篇 测绘科学与技术
    • 4 篇 仪器科学与技术
    • 1 篇 机械工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 交通运输工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 生物医学工程(可授...
  • 20 篇 理学
    • 12 篇 物理学
    • 5 篇 数学
    • 4 篇 地球物理学
    • 1 篇 统计学(可授理学、...
  • 17 篇 医学
    • 17 篇 临床医学
    • 1 篇 特种医学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 69 篇 algorithm unroll...
  • 15 篇 deep learning
  • 11 篇 optimization
  • 7 篇 interpretable ne...
  • 7 篇 signal processin...
  • 6 篇 feature extracti...
  • 5 篇 compressed sensi...
  • 5 篇 encoding
  • 5 篇 training
  • 4 篇 imaging
  • 4 篇 inverse problems
  • 4 篇 image deblurring
  • 4 篇 iterative method...
  • 4 篇 graph neural net...
  • 4 篇 sparse coding
  • 4 篇 learning to opti...
  • 3 篇 fault diagnosis
  • 3 篇 deep neural netw...
  • 3 篇 interpretable de...
  • 3 篇 graph signal pro...

机构

  • 4 篇 xi an jiao tong ...
  • 3 篇 nanyang technol ...
  • 2 篇 weizmann inst sc...
  • 2 篇 chinese acad sci...
  • 2 篇 univ chinese aca...
  • 2 篇 china univ geosc...
  • 2 篇 xi an jiao tong ...
  • 2 篇 xi an jiao tong ...
  • 2 篇 univ elect sci &...
  • 2 篇 dongguk univ dep...
  • 2 篇 penn state univ ...
  • 2 篇 peking univ sch ...
  • 2 篇 mitsubishi elect...
  • 2 篇 univ hong kong d...
  • 2 篇 shanghaitech uni...
  • 2 篇 xi an jiao tong ...
  • 2 篇 china univ geosc...
  • 1 篇 rice univ dept e...
  • 1 篇 kyungpook natl u...
  • 1 篇 indian inst sci ...

作者

  • 8 篇 eldar yonina c.
  • 5 篇 wang shibin
  • 5 篇 chen xuefeng
  • 4 篇 yan ruqiang
  • 4 篇 monga vishal
  • 3 篇 lee chul
  • 3 篇 qin fuhua
  • 3 篇 halimi abderrahi...
  • 3 篇 koo jakeoung
  • 3 篇 li yuelong
  • 3 篇 mclaughlin steph...
  • 3 篇 chen siheng
  • 3 篇 zhao zhibin
  • 2 篇 wotao yin
  • 2 篇 jialin liu
  • 2 篇 song pingfan
  • 2 篇 zhang haichuan
  • 2 篇 chen bin
  • 2 篇 dragotti pier lu...
  • 2 篇 chan stanley h.

语言

  • 68 篇 英文
  • 1 篇 其他
检索条件"主题词=Algorithm unrolling"
69 条 记 录,以下是61-70 订阅
排序:
A Bayesian Based unrolling Approach to Single-Photon Lidar Imaging through Obscurants  30
A Bayesian Based Unrolling Approach to Single-Photon Lidar I...
收藏 引用
30th European Signal Processing Conference (EUSIPCO)
作者: Koo, Jakeoung Halimi, Abderrahim Maccarone, Aurora Buller, Gerald S. McLaughlin, Stephen Heriot Watt Univ Sch Engn & Phys Sci Edinburgh Midlothian Scotland
In this paper, we propose a deep learning model for 3D single-photon Lidar imaging through obscurants, i.e., in the presence of a high and non-uniform background. The proposed method unrolls the iterative steps of a B... 详细信息
来源: 评论
BAYESIAN DEEP UNFOLDING WITH GRAPH ATTENTION FOR DUAL-PEAK SINGLE-PHOTON LIDAR IMAGING  32
BAYESIAN DEEP UNFOLDING WITH GRAPH ATTENTION FOR DUAL-PEAK S...
收藏 引用
32nd European Signal Processing Conference (EUSIPCO)
作者: Koo, JaKeoung Halimi, Abderrahim McLaughlin, Stephen Gachon Univ Sch Comp Seongnam South Korea Heriot Watt Univ Edinburgh Midlothian Scotland
Single-photon Lidar is a promising 3D imaging technique, but it is challenging to deploy in real-world applications due to high noise levels and the presence of multiple surfaces per pixel. Existing statistical method... 详细信息
来源: 评论
Enhancing Electrical Impedance Tomography Reconstruction Using Learned Half-Quadratic Splitting Networks with Anderson Acceleration
收藏 引用
JOURNAL OF SCIENTIFIC COMPUTING 2024年 第2期98卷 49-49页
作者: Xu, Guixian Wang, Huihui Zhou, Qingping Cent South Univ Sch Math & Stat HNP LAMA Changsha Peoples R China
Electrical Impedance Tomography (EIT) is widely applied in medical diagnosis, industrial inspection, and environmental monitoring. Combining the physical principles of the imaging system with the advantages of data-dr... 详细信息
来源: 评论
Unrolled Network for Light Field Display
收藏 引用
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS 2022年 第10期E105D卷 1721-1725页
作者: Matsuura, Kotaro Tsutake, Chihiro Takahashi, Keita Fujii, Toshiaki Nagoya Univ Grad Sch Engn Nagoya 4648603 Japan
Inspired by the framework of algorithm unrolling, we pro-pose a scalable network architecture that computes layer patterns for light field displays, enabling control of the trade-off between the display quality and th... 详细信息
来源: 评论
Deep Interpretable Fully CNN Structure for Sparse Hyperspectral Unmixing via Model-Driven and Data-Driven Integration
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2023年 61卷 1-1页
作者: Kong, Fanqiang Chen, Mengyue Li, Yunsong Li, Dan Zheng, Yuhan Nanjing Univ Aeronaut & Astronaut Coll Astronaut Nanjing 210016 Peoples R China Xidian Univ State Key Lab Integrated Serv Networks Xidian 710071 Peoples R China
Hyperspectral unmixing (HSU), which aims to identify constituent materials and estimate the corresponding proportions in a scene, is an essential research topic in remote sensing. Most deep learning-based methods are ... 详细信息
来源: 评论
LADMM-Net: An unrolled deep network for spectral image fusion from compressive data
收藏 引用
SIGNAL PROCESSING 2021年 189卷 108239-108239页
作者: Ramirez, Juan Marcos Martinez-Torre, Jose Ignacio Arguello, Henry Univ Rey Juan Carlos Comp Sci Dept Mostoles Spain Univ Ind Santander Comp Sci Dept Bucaramanga Colombia
Image fusion aims at estimating a high-resolution spectral image from a low-spatial-resolution hyper spectral image and a low-spectral-resolution multispectral image. In this regard, compressive spectral imaging (CSI)... 详细信息
来源: 评论
Learning-Based High-Frame-Rate SAR Imaging
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2023年 61卷 1页
作者: Wu, Junjie Pu, Wei An, Hongyang Huang, Yulin Yang, Haiguang Yang, Jianyu Univ Elect Sci & Technol China Sch Informat & Commun Engn Chengdu Peoples R China
As high-frame-rate synthetic aperture radar (SAR) has the ability to form continuous SAR images and dynamically monitor the ground areas of interest, it has attracted more and more attention nowadays. In practical app... 详细信息
来源: 评论
Learning to optimize: a primer and a benchmark
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2022年 第1期23卷 8562-8620页
作者: Tianlong Chen Xiaohan Chen Wuyang Chen Zhangyang Wang Howard Heaton Jialin Liu Wotao Yin Department of Electrical and Computer and Engineering The University of Texas at Austin Austin TX Typal Research Typal LLC Los Angeles CA Alibaba US Damo Academy Decision Intelligence Lab Bellevue WA
Learning to optimize (L2O) is an emerging approach that leverages machine learning to develop optimization methods, aiming at reducing the laborious iterations of hand engineering. It automates the design of an optimi... 详细信息
来源: 评论
Learning the sparse prior: Modern approaches
收藏 引用
Wiley Interdisciplinary Reviews: Computational Statistics 2024年 第1期16卷 e1646-e1646页
作者: Peng, Guan-Ju Institute of Data Science and Information Computing National Chung Hsing University Taichung Taiwan
The sparse prior has been widely adopted to establish data models for numerous applications. In this context, most of them are based on one of three foundational paradigms: the conventional sparse representation, the ... 详细信息
来源: 评论