We consider the distributed Cholesky factorization on homogeneous nodes. Inspired by recent progress on asymptotic lower bounds on the total communication volume required to perform Cholesky factorization, we present ...
详细信息
ISBN:
(纸本)9781665454445
We consider the distributed Cholesky factorization on homogeneous nodes. Inspired by recent progress on asymptotic lower bounds on the total communication volume required to perform Cholesky factorization, we present an original data distribution, Symmetric Block Cyclic (SBC), designed to take advantage of the symmetry of the matrix. We prove that SBC reduces the overall communication volume between nodes by a factor of square root of 2 compared to the standard 2D block-cyclic distribution. SBC can easily be implemented within the paradigm of task-based runtime systems. Experiments using the Chameleon library over the StarPU runtime system demonstrate that the SBC distribution reduces the communication volume as expected, and also achieves better performance and scalability than the classical 2D block-cyclic allocation scheme in all configurations. We also propose a 2.5D variant of SBC and prove that it further improves the communication and performance benefits.
We consider the distributed Cholesky factorization on homogeneous nodes. Inspired by recent progress on asymptotic lower bounds on the total communication volume required to perform Cholesky factorization, we present ...
详细信息
We consider the distributed Cholesky factorization on homogeneous nodes. Inspired by recent progress on asymptotic lower bounds on the total communication volume required to perform Cholesky factorization, we present an original data distribution, Symmetric Block Cyclic (SBC), designed to take advantage of the symmetry of the matrix. We prove that SBC reduces the overall communication volume between nodes by a factor of square root of 2 compared to the standard 2D block-cyclic distribution. SBC can easily be implemented within the paradigm of task-based runtime systems. Experiments using the Chameleon library over the StarPU runtime system demonstrate that the SBC distribution reduces the communication volume as expected, and also achieves better performance and scalability than the classical 2D block-cyclic allocation scheme in all configurations. We also propose a 2.5D variant of SBC and prove that it further improves the communication and performance benefits.
The performance of CPU-based and GPU-based systems is often low for PDF codes, where large, sparse, and often structured systems of linear equations must be solved. Iterative solvers are limited by data movement, both...
详细信息
ISBN:
(纸本)9781728199986
The performance of CPU-based and GPU-based systems is often low for PDF codes, where large, sparse, and often structured systems of linear equations must be solved. Iterative solvers are limited by data movement, both between caches and memory and between nodes. Here we describe the solution of such systems of equations on the Cerebras systems CS-1, a wafer-scale processor that has the memory bandwidth and communication latency to perform well. We achieve 0.86 PFLOPS on a single wafer-scale system for the solution by BiCGStab of a linear system arising from a 7-point finite difference stencil on a 600 x 595 x 1536 mesh, achieving about one third of the machine's peak performance. We explain the system, its architecture and programming, and its performance on this problem and related problems. We discuss issues of memory capacity and floating point precision. We outline plans to extend this work towards full applications.
暂无评论