This is a paper on modulation theory that addresses joint analog precoder and equalizer design for multichannel data transmission over the frequency-selective additive Gaussian noise (AGN) channel. The design goal is ...
详细信息
This is a paper on modulation theory that addresses joint analog precoder and equalizer design for multichannel data transmission over the frequency-selective additive Gaussian noise (AGN) channel. The design goal is to maximize mutual information rate, minimize the mean square error, or minimize the bit error rate subject to a transmit power constraint. We assume a continuous channel model with precoder transmissions for m subchannels that lie in an n-dimensional linear subspace of L-2(R). m and n are design parameters. We first design the subspace according to the channel characteristics, and then design the precoders as functions in this subspace. After the design of the optimal precoder and equalizer, we explore the geometry of these designs. We show that all of these precoder and equalizer designs are, in fact, decompositions of a virtual two-channel problem into a system of canonical coordinates, wherein variables in the canonical message channel are correlated only pairwise with corresponding variables in the canonical measurement channel. This finding clarifies the geometry of precoder and equalizer designs and illustrates that they decompose the two-channel communication problem into what might be called the Shannon channel.
Millimeter wave MIMO systems provide orders of magnitude in data rates due to larger bandwidth than conventional MIMO systems. On the other hand, they experience severe free-space pathloss as carrier frequency ten-fol...
详细信息
ISBN:
(纸本)9781538663585
Millimeter wave MIMO systems provide orders of magnitude in data rates due to larger bandwidth than conventional MIMO systems. On the other hand, they experience severe free-space pathloss as carrier frequency ten-fold increases. The resulting small wavelength helps to overcome pathloss with beamforming gain using massive antennas, known as precoding. In mmWave MIMO system, hybrid beamforming combines analog beamforming with digital precoding to reduce the energy consumption and complexity. Hybrid beamforming uses a smaller number of RF chains, which have large power consumption, than the number of antennas. In order to design analog and digital precoder, a large number of calculations such as the SVD of channel is required. In this paper, we propose low complexity hybrid precoding algorithm using beam steering, which utilizes array response vectors of the channel. We first propose the method of selection the analog beamforming matrix without any SVD or inversion of matrices. Then, we find the digital precoding matrix which performs a maximum of the total sum rate with fixed analog beamforming matrix. Since our proposed algorithm applies a set of array response vectors that are used to form the channel, there is no need for complicated operations as SVD like traditional precoding algorithms. Simulation results show that proposed algorithm can reduce the computational complexity while achieving about 93% the same performance in achievable rate compared to typical hybrid precoding in mmWave MIMO systems.
This work aims to provide an effective hybrid beam forming method with Dual-Deep-Network to overcome overhead for mm-wave massive MIMO systems. In this paper, a Dual-Deep-Network technique is described for the extract...
详细信息
This work aims to provide an effective hybrid beam forming method with Dual-Deep-Network to overcome overhead for mm-wave massive MIMO systems. In this paper, a Dual-Deep-Network technique is described for the extraction of statistical structures from a hybrid beam forming model based on mmWave logics, as well as training logic for the network map functions. The proposed approach of DDN is trained with proper data sequences used for communication and the training phase is conducted with the norms of numerous channel variants. With the nature of diverse channel states, a Dual-Deep-Network is required to manipulate the level of presence and abilities even after training as well. The performance level improvements are practically summarized in both the transmission and reception entities with the help of the proposed hybrid network architecture and the associated Dual Deep Network algorithm. Specifically, the BER versus SNR and spectral efficiency versus SNR are evaluated as well as the resulting accuracy levels are cross validated with numerous classical communication techniques. This paper shows the processing difficulties of the proposed approach and typically cross-validates with other beam forming logics. The computational cost and performance estimations are improved, and the metrics are clearly visualized on this paper based on improved beamforming procedures as well as the proposed approach of DDN based Multi-Resolution Code Book performance metrics are estimated clearly with proper mathematical model investigations. With 7Kbits/s/Hz and 1e-1, respectively, the key metrics of spectral efficiency and BER are enhanced.
Millimeter wave MIMO systems provide orders of magnitude in data rates due to larger bandwidth than conventional MIMO systems. On the other hand, they experience severe free-space pathloss as carrier frequency ten-fol...
详细信息
ISBN:
(纸本)9781538663592;9781538663585
Millimeter wave MIMO systems provide orders of magnitude in data rates due to larger bandwidth than conventional MIMO systems. On the other hand, they experience severe free-space pathloss as carrier frequency ten-fold increases. The resulting small wavelength helps to overcome pathloss with beamforming gain using massive antennas, known as precoding. In mmWave MIMO system, hybrid beamforming combines analog beamforming with digital precoding to reduce the energy consumption and complexity. Hybrid beamforming uses a smaller number of RF chains, which have large power consumption, than the number of antennas. In order to design analog and digital precoder, a large number of calculations such as the SVD of channel is required. In this paper, we propose low complexity hybrid precoding algorithm using beam steering, which utilizes array response vectors of the channel. We first propose the method of selection the analog beamforming matrix without any SVD or inversion of matrices. Then, we find the digital precoding matrix which performs a maximum of the total sum rate with fixed analog beamforming matrix. Since our proposed algorithm applies a set of array response vectors that are used to form the channel, there is no need for complicated operations as SVD like traditional precoding algorithms. Simulation results show that proposed algorithm can reduce the computational complexity while achieving about 93% the same performance in achievable rate compared to typical hybrid precoding in mmWave MIMO systems.
暂无评论