咨询与建议

限定检索结果

文献类型

  • 129 篇 期刊文献
  • 86 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 217 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 206 篇 工学
    • 186 篇 计算机科学与技术...
    • 70 篇 电气工程
    • 55 篇 信息与通信工程
    • 38 篇 软件工程
    • 13 篇 控制科学与工程
    • 5 篇 网络空间安全
    • 3 篇 仪器科学与技术
    • 2 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
  • 19 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 12 篇 理学
    • 10 篇 化学
    • 3 篇 生物学
    • 2 篇 数学
  • 3 篇 农学
    • 3 篇 水产
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 217 篇 android malware ...
  • 63 篇 machine learning
  • 30 篇 deep learning
  • 29 篇 static analysis
  • 19 篇 feature extracti...
  • 17 篇 mobile security
  • 15 篇 malware
  • 11 篇 feature selectio...
  • 9 篇 graph neural net...
  • 9 篇 function call gr...
  • 7 篇 classification
  • 6 篇 ensemble learnin...
  • 5 篇 malware classifi...
  • 5 篇 adversarial mach...
  • 5 篇 semantics
  • 5 篇 smart phones
  • 5 篇 codes
  • 5 篇 security
  • 5 篇 artificial intel...
  • 5 篇 training

机构

  • 5 篇 chinese acad sci...
  • 5 篇 univ chinese aca...
  • 4 篇 univ elect sci &...
  • 3 篇 univ sci & techn...
  • 3 篇 beijing univ tec...
  • 3 篇 harbin inst tech...
  • 3 篇 sichuan univ sch...
  • 3 篇 southwest univ s...
  • 3 篇 beijing univ pos...
  • 3 篇 west virginia un...
  • 2 篇 shandong prov ke...
  • 2 篇 hong kong polyte...
  • 2 篇 cheikh anta diop...
  • 2 篇 natl taiwan univ...
  • 2 篇 tsinghua univ de...
  • 2 篇 shandong univ pe...
  • 2 篇 fujian normal un...
  • 2 篇 univ basque coun...
  • 2 篇 univ basque coun...
  • 2 篇 xinjiang univ sc...

作者

  • 5 篇 ye yanfang
  • 5 篇 hou shifu
  • 4 篇 yuan wei
  • 4 篇 ouya samuel
  • 4 篇 zhu dali
  • 4 篇 vinod p.
  • 4 篇 zhang yiming
  • 3 篇 xue jingfeng
  • 3 篇 nazir ahsan
  • 3 篇 wajahat ahsan
  • 3 篇 wang ruoyu
  • 3 篇 chen zhenxiang
  • 3 篇 moonsamy veelash...
  • 3 篇 ge xiuting
  • 3 篇 mahmood tariq
  • 3 篇 li heng
  • 3 篇 conti mauro
  • 3 篇 luo xiapu
  • 3 篇 sezer sakir
  • 3 篇 bostani hamid

语言

  • 216 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"主题词=Android Malware Detection"
217 条 记 录,以下是101-110 订阅
排序:
αCyber: Enhancing Robustness of android malware detection System against Adversarial Attacks on Heterogeneous Graph based Model  19
αCyber: Enhancing Robustness of Android Malware Detection S...
收藏 引用
28th ACM International Conference on Information and Knowledge Management (CIKM)
作者: Hou, Shifu Fan, Yujie Zhang, Yiming Ye, Yanfang Lei, Jingwei Wan, Wenqiang Wang, Jiabin Xiong, Qi Shao, Fudong Case Western Reserve Univ Dept CDS Cleveland OH 44106 USA Tencent Tencent Secur Lab Shenzhen Guangdong Peoples R China
The explosive growth and increasing sophistication of android malware call for new defensive techniques that are capable of protecting mobile users against novel threats. To combat the evolving android malware attacks... 详细信息
来源: 评论
A multi-view context-aware approach to android malware detection and malicious code localization
收藏 引用
EMPIRICAL SOFTWARE ENGINEERING 2018年 第3期23卷 1222-1274页
作者: Narayanan, Annamalai Chandramohan, Mahinthan Chen, Lihui Liu, Yang Nanyang Technol Univ Singapore Singapore Nanyang Technol Univ Ctr Infocomm Technol Sch Elect & Elect Engn Singapore Singapore
Many existing Machine Learning (ML) based android malware detection approaches use a variety of features such as security-sensitive APIs, system calls, control-flow structures and information flows in conjunction with... 详细信息
来源: 评论
A Novel Dynamic android malware detection System With Ensemble Learning
收藏 引用
IEEE ACCESS 2018年 6卷 30996-31011页
作者: Feng, Pengbin Ma, Jianfeng Sun, Cong Xu, Xinpeng Ma, Yuwan Xidian Univ Sch Cyber Engn Xian 710071 Shaanxi Peoples R China Xidian Univ Sch Comp Sci & Technol Xian 710071 Shaanxi Peoples R China
With the popularity of android smartphones, malicious applications targeted android platform have explosively increased. Proposing effective android malware detection method for preventing the spread of malware has be... 详细信息
来源: 评论
Permission-based android malware detection System Using Feature Selection with Genetic Algorithm
收藏 引用
INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING 2019年 第2期29卷 245-262页
作者: Yildiz, Oktay Dogru, Ibrahim Alper Gazi Univ Fac Engn Dept Comp Engn Ankara Turkey
As the use of smartphones increases, android, as a Linux-based open source mobile operating system (OS), has become the most popular mobile OS in time. Due to the widespread use of android, malware developers mostly t... 详细信息
来源: 评论
Fine-grained android malware detection based on Deep Learning  6
Fine-grained Android Malware Detection based on Deep Learnin...
收藏 引用
6th IEEE Conference on Communications and Network Security (CNS)
作者: Li, Dongfang Wang, Zhaoguo Xue, Yibo Tsinghua Univ Dept Comp Sci & Technol Beijing Peoples R China Harbin Inst Technol Sch Comp Sci & Technol Harbin Heilongjiang Peoples R China Tsinghua Univ Tsinghua Natl Lab Informat Sci & Tech Beijing Peoples R China
android smartphone users have been suffering from the security problems these years. There is a serious threat to the network security and privacy brought by the mobile malware. In this paper, we use the deep-learning... 详细信息
来源: 评论
Application of Machine Learning Algorithms for android malware detection  2018
Application of Machine Learning Algorithms for Android Malwa...
收藏 引用
International Conference on Computational Intelligence and Intelligent Systems (CIIS)
作者: Kakavand, Mohsen Dabbagh, Mohammad Dehghantanha, Ali Sunway Univ Sch Sci & Technol Kuala Lumpur Malaysia Univ Guelph Sch Comp Sci Guelph ON Canada
As the popularity of android smart devises increases, the battle of alleviating android malware has been considered as a crucial activity with the advent of new attacks including progressively complicated evasion tech... 详细信息
来源: 评论
URefFlow: A Unified android malware detection Model Based on Reflective Calls  37
URefFlow: A Unified Android Malware Detection Model Based on...
收藏 引用
37th IEEE International Performance Computing and Communications Conference (IPCCC)
作者: Liu, Chao Li, Jianan Yu, Min Li, Gang Luo, Bo Chen, Kai Jiang, Jianguo Huang, Weiqing Chinese Acad Sci Inst Informat Engn Beijing Peoples R China Univ Chinese Acad Sci Sch Cyber Secur Beijing Peoples R China Deakin Univ Sch Informat Technol Geelong Vic Australia Univ Kansas Dept Elect Engn & Comp Sci Lawrence KS 66045 USA
In android malware detection, sensitive dataflows provide more accurate information on the application's behavior than regular features such as signatures and permissions. Currently, android static taint analysis ... 详细信息
来源: 评论
android malware detection Using Local Binary Pattern and Principal Component Analysis  3rd
Android Malware Detection Using Local Binary Pattern and Pri...
收藏 引用
3rd International Conference of Pioneering Computer Scientists, Engineers and Educators (ICPCSEE)
作者: Wu, Qixin Qin, Zheng Zhang, Jinxin Yin, Hui Yang, Guangyi Hu, Kuangsheng Hunan Univ Coll Comp Sci & Elect Engn Changsha Hunan Peoples R China Hunan Key Lab Big Data Res & Applicat Changsha Hunan Peoples R China Hunan Inst Metrol & Test Changsha Hunan Peoples R China
Nowadays, analysis methods based on big data have been widely used in malicious software detection. Since android has become the dominator of smartphone operating system market, the number of android malicious applica... 详细信息
来源: 评论
URefFlow: A Unified android malware detection Model Based on Reflective Calls
URefFlow: A Unified Android Malware Detection Model Based on...
收藏 引用
IEEE International Performance Computing and Communications Conference
作者: Chao Liu Jianan Li Min Yu Gang Li Bo Luo Kai Chen Jianguo Jiang Weiqing Huang Institute of Information Engineering Chinese Academy of Sciences Beijing China School of Cyber Security University of Chinese Academy of Sciences Beijing China School of Information Technology Deakin University VIC Australia Department of Electrical Engineering and Computer Science University of Kansas Lawrence Kansas City USA
In android malware detection, sensitive data-flows provide more accurate information on the application's behavior than regular features such as signatures and permissions. Currently, android static taint analysis... 详细信息
来源: 评论
FgDetector: Fine-grained android malware detection  2
FgDetector: Fine-grained Android Malware Detection
收藏 引用
2nd IEEE International Conference on Data Science in Cyberspace (DSC)
作者: Li, Dongfang Wang, Zhaoguo Li, Lixin Wang, Zhihua Wang, Yucheng Xue, Yibo Tsinghua Univ Dept Comp Sci & Technol Beijing Peoples R China Harbin Inst Technol Sch Comp Sci & Technol Harbin Heilongjiang Peoples R China Tsinghua Univ Tsinghua Natl Lab Informat Sci & Tech Beijing Peoples R China Beijing Key Lab Power Dispatching Automat Technol Beijing Peoples R China China Elect Power Res Inst Beijing Peoples R China State Grid Shanghai Municipal Elect Power Co Shanghai Peoples R China
Smartphones are rapidly becoming a necessity in our lives and android is one of the most popular mobile operating systems. However, a large number of android malicious applications hidden behind the benign application... 详细信息
来源: 评论