咨询与建议

限定检索结果

文献类型

  • 124 篇 期刊文献
  • 87 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 213 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 203 篇 工学
    • 183 篇 计算机科学与技术...
    • 67 篇 电气工程
    • 54 篇 信息与通信工程
    • 39 篇 软件工程
    • 14 篇 控制科学与工程
    • 6 篇 网络空间安全
    • 3 篇 仪器科学与技术
    • 2 篇 机械工程
    • 2 篇 石油与天然气工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
  • 20 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
    • 1 篇 公共管理
  • 13 篇 理学
    • 10 篇 化学
    • 3 篇 数学
    • 3 篇 生物学
  • 2 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 公共卫生与预防医...
  • 1 篇 农学
    • 1 篇 水产

主题

  • 213 篇 android malware ...
  • 62 篇 machine learning
  • 30 篇 deep learning
  • 29 篇 static analysis
  • 18 篇 feature extracti...
  • 17 篇 mobile security
  • 14 篇 malware
  • 11 篇 feature selectio...
  • 9 篇 function call gr...
  • 8 篇 graph neural net...
  • 7 篇 classification
  • 6 篇 ensemble learnin...
  • 5 篇 malware classifi...
  • 5 篇 semantics
  • 5 篇 smart phones
  • 5 篇 codes
  • 5 篇 artificial intel...
  • 5 篇 training
  • 5 篇 convolutional ne...
  • 5 篇 dynamic analysis

机构

  • 5 篇 chinese acad sci...
  • 5 篇 univ chinese aca...
  • 3 篇 univ sci & techn...
  • 3 篇 beijing univ tec...
  • 3 篇 harbin inst tech...
  • 3 篇 southwest univ s...
  • 3 篇 beijing univ pos...
  • 3 篇 univ elect sci &...
  • 3 篇 west virginia un...
  • 2 篇 shandong prov ke...
  • 2 篇 hong kong polyte...
  • 2 篇 cheikh anta diop...
  • 2 篇 natl taiwan univ...
  • 2 篇 tsinghua univ de...
  • 2 篇 shandong univ pe...
  • 2 篇 fujian normal un...
  • 2 篇 univ basque coun...
  • 2 篇 univ basque coun...
  • 2 篇 xinjiang univ sc...
  • 2 篇 south china univ...

作者

  • 5 篇 ye yanfang
  • 5 篇 hou shifu
  • 4 篇 yuan wei
  • 4 篇 ouya samuel
  • 4 篇 zhu dali
  • 4 篇 vinod p.
  • 4 篇 zhang yiming
  • 3 篇 xue jingfeng
  • 3 篇 nazir ahsan
  • 3 篇 wajahat ahsan
  • 3 篇 wang ruoyu
  • 3 篇 chen zhenxiang
  • 3 篇 ge xiuting
  • 3 篇 mahmood tariq
  • 3 篇 li heng
  • 3 篇 conti mauro
  • 3 篇 luo xiapu
  • 3 篇 sezer sakir
  • 3 篇 liu zhen
  • 3 篇 wu di

语言

  • 211 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"主题词=Android Malware Detection"
213 条 记 录,以下是121-130 订阅
排序:
URefFlow: A Unified android malware detection Model Based on Reflective Calls
URefFlow: A Unified Android Malware Detection Model Based on...
收藏 引用
IEEE International Performance Computing and Communications Conference
作者: Chao Liu Jianan Li Min Yu Gang Li Bo Luo Kai Chen Jianguo Jiang Weiqing Huang Institute of Information Engineering Chinese Academy of Sciences Beijing China School of Cyber Security University of Chinese Academy of Sciences Beijing China School of Information Technology Deakin University VIC Australia Department of Electrical Engineering and Computer Science University of Kansas Lawrence Kansas City USA
In android malware detection, sensitive data-flows provide more accurate information on the application's behavior than regular features such as signatures and permissions. Currently, android static taint analysis... 详细信息
来源: 评论
MalWhiteout: Reducing Label Errors in android malware detection  22
MalWhiteout: Reducing Label Errors in Android Malware Detect...
收藏 引用
Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering
作者: Liu Wang Haoyu Wang Xiapu Luo Yulei Sui Huazhong University of Science and Technology China and Beijing University of Posts and Telecommunications China Huazhong University of Science and Technology China The Hong Kong Polytechnic University China University of Technology Sydney Australia
Machine learning based android malware detection has attracted a great deal of research work in recent years. A reliable malware dataset is critical to evaluate the effectiveness of malware detection approaches. Unfor... 详细信息
来源: 评论
TL-GNN: android malware detection Using Transfer Learning
Applied AI Letters
收藏 引用
Applied AI Letters 2024年 第3期5卷
作者: Raza, Ali Qaisar, Zahid Hussain Aslam, Naeem Faheem, Muhammad Ashraf, Muhammad Waqar Chaudhry, Muhammad Naman Department of Computer Science NFC Institute of Engineering and Technology Multan Pakistan Department of Computing and Emerging Technologies Emerson University Multan Pakistan Department of Computing Science School of Technology and Innovations University of Vaasa Vaasa Finland Department of Computer Engineering Bahauddin Zakariya University Multan Pakistan
malware growth has accelerated due to the widespread use of android applications. android smartphone attacks have increased due to the widespread use of these devices. While deep learning models offer high efficiency ... 详细信息
来源: 评论
Unified detection of Obfuscated and Native android malware
收藏 引用
Computers, Materials & Continua 2022年 第2期70卷 3099-3116页
作者: Pagnchakneat C.Ouk Wooguil Pak Department of Computer Engineering Keimyung UniversityDaegu42601Korea Department of Information and Communication Engineering Yeungnam UniversityGyeongsanGyeongbuk38541Korea
The android operating system has become a leading smartphone platform for mobile and other smart devices,which in turn has led to a diversity of malware *** amount of research on android malware detection has increase... 详细信息
来源: 评论
A Lightweight On-Device detection Method for android malware
收藏 引用
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS 2021年 第9期51卷 5600-5611页
作者: Yuan, Wei Jiang, Yuan Li, Heng Cai, Minghui Huazhong Univ Sci & Technol Sch Elect Informat & Commun Wuhan 430074 Peoples R China Tencent Shenzhen Peoples R China
android malware poses severe threats to users, hence raising an urgent demand for malware detection. In-cloud android malware detection often suffers privacy leakage and communication overheads. Therefore, this articl... 详细信息
来源: 评论
android HIV: A Study of Repackaging malware for Evading Machine-Learning detection
收藏 引用
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2020年 15卷 987-1001页
作者: Chen, Xiao Li, Chaoran Wang, Derui Wen, Sheng Zhang, Jun Nepal, Surya Xiang, Yang Ren, Kui Swinburne Univ Technol Fac Sci Engn & Technol Hawthorn Vic 3122 Australia CSIRO Data61 Epping NSW 1710 Australia Univ Buffalo State Univ New York Dept Comp Sci & Engn Buffalo NY 14260 USA
Machine learning-based solutions have been successfully employed for the automatic detection of malware on android. However, machine learning models lack robustness to adversarial examples, which are crafted by adding... 详细信息
来源: 评论
An adaptive semi-supervised deep learning-based framework for the detection of android malware
收藏 引用
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2023年 第3期45卷 5141-5157页
作者: Wajahat, Ahsan He, Jingsha Zhu, Nafei Mahmood, Tariq Nazir, Ahsan Pathan, Muhammad Salman Qureshi, Sirajuddin Ullah, Faheem Beijing Univ Technol Fac Informat Technol Beijing Peoples R China Lasbela Univ Agr Water & Marine Sci Dept Comp Sci Lasebla Pakistan Univ Educ Fac Informat Sci Vehari Campus Vehari Pakistan Sci Maynooth Univ Dept Comp Maynooth Ireland
Positive developments in smartphone usage have led to an increase in malicious attacks, particularly targeting android mobile devices. android has been a primary target for malware exploiting security vulnerabilities ... 详细信息
来源: 评论
Cognitively Inspired Three-Way Decision Making and Bi-Level Evolutionary Optimization for Mobile Cybersecurity Threats detection: A Case Study on android malware
收藏 引用
COGNITIVE COMPUTATION 2024年 第6期16卷 3200-3227页
作者: Jerbi, Manel Dagdia, Zaineb Chelly Bechikh, Slim Ben Said, Lamjed Univ Tunis ISG CS Dept SMART Lab Tunis Tunisia Univ Luxembourg Fac Sci Technol & Med L-4364 Esch Sur Alzette Luxembourg Univ Tunis LARODEC ISG Tunis Tunisia Univ Paris Saclay DAVID UVSQ Paris France
Malicious apps use a variety of methods to spread infections, take over computers and/or IoT devices, and steal sensitive data. Several detection techniques have been proposed to counter these attacks. Despite the pro... 详细信息
来源: 评论
Novel Multi-Classification Dynamic detection Model for android malware Based on Improved Zebra Optimization Algorithm and LightGBM
收藏 引用
SENSORS 2024年 第18期24卷 5975页
作者: Zhou, Shuncheng Li, Honghui Fu, Xueliang Han, Daoqi He, Xin Inner Mongolia Agr Univ Coll Comp & Informat Engn Hohhot 010018 Peoples R China
With the increasing popularity of android smartphones, malware targeting the android platform is showing explosive growth. Currently, mainstream detection methods use static analysis methods to extract features of the... 详细信息
来源: 评论
A Multimodal malware detection Technique for android IoT Devices Using Various Features
收藏 引用
IEEE ACCESS 2019年 7卷 64411-64430页
作者: Kumar, Rajesh Zhang, Xiaosong Wang, Wenyong Khan, Riaz Ullah Kumar, Jay Sharif, Abubaker Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu 611731 Sichuan Peoples R China Univ Elect Sci & Technol China Sch Elect Sci & Engn Chengdu 611731 Sichuan Peoples R China Govt Coll Univ Faisalabad Dept Elect Engn Faisalabad 38000 Pakistan
Internet of things (IoT) is revolutionizing this world with its evolving applications in various aspects of life such as sensing, healthcare, remote monitoring, and so on. android devices and applications are working ... 详细信息
来源: 评论