咨询与建议

限定检索结果

文献类型

  • 124 篇 期刊文献
  • 87 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 213 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 203 篇 工学
    • 183 篇 计算机科学与技术...
    • 67 篇 电气工程
    • 54 篇 信息与通信工程
    • 39 篇 软件工程
    • 14 篇 控制科学与工程
    • 6 篇 网络空间安全
    • 3 篇 仪器科学与技术
    • 2 篇 机械工程
    • 2 篇 石油与天然气工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
  • 20 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
    • 1 篇 公共管理
  • 13 篇 理学
    • 10 篇 化学
    • 3 篇 数学
    • 3 篇 生物学
  • 2 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 公共卫生与预防医...
  • 1 篇 农学
    • 1 篇 水产

主题

  • 213 篇 android malware ...
  • 62 篇 machine learning
  • 30 篇 deep learning
  • 29 篇 static analysis
  • 18 篇 feature extracti...
  • 17 篇 mobile security
  • 14 篇 malware
  • 11 篇 feature selectio...
  • 9 篇 function call gr...
  • 8 篇 graph neural net...
  • 7 篇 classification
  • 6 篇 ensemble learnin...
  • 5 篇 malware classifi...
  • 5 篇 semantics
  • 5 篇 smart phones
  • 5 篇 codes
  • 5 篇 artificial intel...
  • 5 篇 training
  • 5 篇 convolutional ne...
  • 5 篇 dynamic analysis

机构

  • 5 篇 chinese acad sci...
  • 5 篇 univ chinese aca...
  • 3 篇 univ sci & techn...
  • 3 篇 beijing univ tec...
  • 3 篇 harbin inst tech...
  • 3 篇 southwest univ s...
  • 3 篇 beijing univ pos...
  • 3 篇 univ elect sci &...
  • 3 篇 west virginia un...
  • 2 篇 shandong prov ke...
  • 2 篇 hong kong polyte...
  • 2 篇 cheikh anta diop...
  • 2 篇 natl taiwan univ...
  • 2 篇 tsinghua univ de...
  • 2 篇 shandong univ pe...
  • 2 篇 fujian normal un...
  • 2 篇 univ basque coun...
  • 2 篇 univ basque coun...
  • 2 篇 xinjiang univ sc...
  • 2 篇 south china univ...

作者

  • 5 篇 ye yanfang
  • 5 篇 hou shifu
  • 4 篇 yuan wei
  • 4 篇 ouya samuel
  • 4 篇 zhu dali
  • 4 篇 vinod p.
  • 4 篇 zhang yiming
  • 3 篇 xue jingfeng
  • 3 篇 nazir ahsan
  • 3 篇 wajahat ahsan
  • 3 篇 wang ruoyu
  • 3 篇 chen zhenxiang
  • 3 篇 ge xiuting
  • 3 篇 mahmood tariq
  • 3 篇 li heng
  • 3 篇 conti mauro
  • 3 篇 luo xiapu
  • 3 篇 sezer sakir
  • 3 篇 liu zhen
  • 3 篇 wu di

语言

  • 211 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"主题词=Android Malware Detection"
213 条 记 录,以下是131-140 订阅
排序:
SafeGuard: a behavior based real-time malware detection scheme for mobile multimedia applications in android platform
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2017年 第17期76卷 18153-18173页
作者: Jeong, Eun Su Kim, In Seok Lee, Dong Hoon SK Planet Co Ltd 264 Pangyo Ro Seongnam Si Gyeonggi Do South Korea Korea Univ CIST Seoul South Korea
SafeGuard is proposed as a solution to monitor behaviors of smartphone applications in real-time and detect and block any malicious behaviors. This solution consists of a server that manages and deploys the blocking r... 详细信息
来源: 评论
CloudIntellMal: An advanced cloud based intelligent malware detection framework to analyze android applications
收藏 引用
COMPUTERS & ELECTRICAL ENGINEERING 2024年 第PartA期119卷
作者: Mishra, Preeti Jain, Tanmay Aggarwal, Palak Paul, Gunjan Gupta, Brij B. Attar, Razaz Waheeb Gaurav, Akshat Doon Univ Sch Technol Dept Comp Sci Dehra Dun India Reverie Language Technol Ltd Bangalore India Cognizant Ghaziabad India Amazon Bangalore India Asia Univ Dept Comp Sci & Informat Engn Taichung Taiwan Kyung Hee Univ 26 Kyungheedae Ro Seoul South Korea Symbiosis Int Univ Symbiosis Ctr Informat Technol SCIT Pune India Univ Petr & Energy Studies UPES Ctr Interdisciplinary Res Dehra Dun India Princess Nourah bint Abdulrahman Univ Coll Business Adm Management Dept POB 84428 Riyadh 11671 Saudi Arabia Ronin Inst Montclair NJ USA
Serverless computing has become very popular in recent times which facilitates a greater abstraction in virtualization technology. With the rapid development in serverless computing, a new paradigm has been evolved to... 详细信息
来源: 评论
DeepFlow: Deep Learning-Based malware detection by Mining android Application for Abnormal Usage of Sensitive Data
DeepFlow: Deep Learning-Based Malware Detection by Mining An...
收藏 引用
IEEE Symposium on Computers and Communications (ISCC)
作者: Zhu, Dali Jin, Hao Yang, Ying Wu, Di Chen, Weiyi Univ Chinese Acad Sci Sch Cyber Secur Inst Informat Engn Beijing Peoples R China Univ Chinese Acad Sci Sch Comp Control Inst Optoelect Beijing Peoples R China
The open nature of android allows application developers to take full advantage of the system. While the flexibility is brought to developers and users, it may raise significant issues related to malicious application... 详细信息
来源: 评论
A Transparent and Multimodal malware detection Method for android Apps  19
A Transparent and Multimodal Malware Detection Method for An...
收藏 引用
22nd ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (ACM MSWiM)
作者: Zhu, Dali Xi, Tong Jing, Pengfei Wu, Di Xia, Qing Zhang, Yiming Chinese Acad Sci Inst Informat Engn Beijing Peoples R China Univ Chinese Acad Sci Sch Cyber Secur Beijing Peoples R China Chinese Acad Sci Inst Software Beijing Peoples R China
While recent works have shown that deep learning method can improve the malware classification accuracy, the lack of the transparency has restricted its application in anti-virus scan engines. Existing researches have... 详细信息
来源: 评论
MulAV: Multilevel and Explainable detection of android malware with Data Fusion  18th
MulAV: Multilevel and Explainable Detection of Android Malwa...
收藏 引用
18th International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP)
作者: Li, Qun Chen, Zhenxiang Yan, Qiben Wang, Shanshan Ma, Kun Shi, Yuliang Cui, Lizhen Univ Jinan Sch Informat Sci & Engn Jinan 250022 Shandong Peoples R China Shandong Prov Key Lab Network Based Intelligent C Jinan 250022 Shandong Peoples R China Univ Nebraska Lincoln NE USA Shandong Univ Jinan 250101 Shandong Peoples R China
With the popularization of smartphones, the number of mobile applications has grown substantially. However, many malware are emerging and thus pose a serious threat to the user's mobile phones. malware detection h... 详细信息
来源: 评论
An Early detection of android malware Using System Calls based Machine Learning Model  22
An Early Detection of Android Malware Using System Calls bas...
收藏 引用
17th International Conference on Availability, Reliability and Security (ARES)
作者: Zhang, Xinrun Mathur, Akshay Zhao, Lei Rahmat, Safia Niyaz, Quamar Javaid, Ahmad Yang, Xiaoli Purdue Univ Northwest Hammond IN 46323 USA Univ Toledo 2801 W Bancroft St Toledo OH 43606 USA
Several host intrusion detection systems (HIDSs) based on system call analysis have been proposed in the past to detect intrusions and malware using relevant datasets. Machine learning (ML) techniques have been applie... 详细信息
来源: 评论
Exploring Feature Extraction and ELM in malware detection for android Devices  12th
收藏 引用
12th International Symposium on Neural Networks (ISNN)
作者: Zhang, Wei Ren, Huan Jiang, Qingshan Zhang, Kai Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen 518055 Peoples R China Univ Sci & Technol China Hefei 230051 Peoples R China
A huge increase in the number of mobile malware brings a serious threat to Internet security, as the adoption rate of mobile device is soaring, especially android device. A variety of researches have been developed to... 详细信息
来源: 评论
Deep Convolution Neural Networks for Image-Based android malware Classification
收藏 引用
Computers, Materials & Continua 2025年 第3期82卷 4093-4116页
作者: Amel Ksibi Mohammed Zakariah Latifah Almuqren Ala Saleh Alluhaidan Department of Information Systems College of Computer and Information SciencesPrincess Nourah bint Abdulrahman UniversityRiyadh11671Saudi Arabia College of Computer and Information Sciences King Saud UniversityRiyadhP.O.Box 11442Saudi Arabia
The analysis of android malware shows that this threat is constantly increasing and is a real threat to mobile devices since traditional approaches,such as signature-based detection,are no longer effective due to the ... 详细信息
来源: 评论
Hybrid Multilevel detection of Mobile Devices malware Under Concept Drift
收藏 引用
JOURNAL OF NETWORK AND SYSTEMS MANAGEMENT 2025年 第2期33卷 1-32页
作者: Augello, Andrea De Paola, Alessandra Lo Re, Giuseppe Univ Palermo Dept Engn Palermo Italy
malwares are a major threat to the security of mobile devices, and Machine Learning (ML) is a widespread approach to automatically detect them. However, running ML analysis pipelines can be excessively burdensome for ... 详细信息
来源: 评论
ASDroid: Resisting Evolving android malware With API Clusters Derived From Source Code
收藏 引用
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2025年 20卷 1822-1835页
作者: Hu, Qihua Wang, Weiping Song, Hong Guo, Song Zhang, Jian Zhang, Shigeng Cent South Univ Sch Comp Sci & Engn Changsha 410083 Peoples R China Hong Kong Univ Sci & Technol Dept Comp Sci & Engn Hong Kong Peoples R China
Machine learning-based android malware detection has consistently demonstrated superior results. However, with the continual evolution of the android framework, the efficacy of the deployed models declines markedly. E... 详细信息
来源: 评论