咨询与建议

限定检索结果

文献类型

  • 128 篇 期刊文献
  • 86 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 216 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 206 篇 工学
    • 186 篇 计算机科学与技术...
    • 70 篇 电气工程
    • 55 篇 信息与通信工程
    • 38 篇 软件工程
    • 13 篇 控制科学与工程
    • 5 篇 网络空间安全
    • 3 篇 仪器科学与技术
    • 2 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
  • 19 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 12 篇 理学
    • 10 篇 化学
    • 3 篇 生物学
    • 2 篇 数学
  • 3 篇 农学
    • 3 篇 水产
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 216 篇 android malware ...
  • 62 篇 machine learning
  • 30 篇 deep learning
  • 29 篇 static analysis
  • 19 篇 feature extracti...
  • 17 篇 mobile security
  • 15 篇 malware
  • 11 篇 feature selectio...
  • 9 篇 graph neural net...
  • 9 篇 function call gr...
  • 7 篇 classification
  • 6 篇 ensemble learnin...
  • 5 篇 malware classifi...
  • 5 篇 adversarial mach...
  • 5 篇 semantics
  • 5 篇 smart phones
  • 5 篇 codes
  • 5 篇 security
  • 5 篇 artificial intel...
  • 5 篇 training

机构

  • 5 篇 chinese acad sci...
  • 5 篇 univ chinese aca...
  • 4 篇 univ elect sci &...
  • 3 篇 univ sci & techn...
  • 3 篇 beijing univ tec...
  • 3 篇 harbin inst tech...
  • 3 篇 sichuan univ sch...
  • 3 篇 southwest univ s...
  • 3 篇 beijing univ pos...
  • 3 篇 west virginia un...
  • 2 篇 shandong prov ke...
  • 2 篇 hong kong polyte...
  • 2 篇 cheikh anta diop...
  • 2 篇 natl taiwan univ...
  • 2 篇 tsinghua univ de...
  • 2 篇 shandong univ pe...
  • 2 篇 fujian normal un...
  • 2 篇 univ basque coun...
  • 2 篇 univ basque coun...
  • 2 篇 xinjiang univ sc...

作者

  • 5 篇 ye yanfang
  • 5 篇 hou shifu
  • 4 篇 yuan wei
  • 4 篇 ouya samuel
  • 4 篇 zhu dali
  • 4 篇 vinod p.
  • 4 篇 zhang yiming
  • 3 篇 xue jingfeng
  • 3 篇 nazir ahsan
  • 3 篇 wajahat ahsan
  • 3 篇 wang ruoyu
  • 3 篇 chen zhenxiang
  • 3 篇 moonsamy veelash...
  • 3 篇 ge xiuting
  • 3 篇 mahmood tariq
  • 3 篇 li heng
  • 3 篇 conti mauro
  • 3 篇 luo xiapu
  • 3 篇 sezer sakir
  • 3 篇 bostani hamid

语言

  • 215 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"主题词=Android Malware Detection"
216 条 记 录,以下是151-160 订阅
排序:
MVDroid: an android malicious VPN detector using neural networks
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2023年 第29期35卷 21555-21565页
作者: Seraj, Saeed Khodambashi, Siavash Pavlidis, Michalis Polatidis, Nikolaos Univ Brighton Sch Architecture Technol & Engn Brighton BN2 4GJ England Islamic Azad Univ Dept Comp Engn Yadegar Eimam Khomeini RAH Shahr Erey Branch Tehran Iran
The majority of Virtual Private Networks (VPNs) fail when it comes to protecting our privacy. If we are using a VPN to protect our online privacy, many of the well-known VPNs are not secure to use. When examined close... 详细信息
来源: 评论
A Transparent and Multimodal malware detection Method for android Apps  19
A Transparent and Multimodal Malware Detection Method for An...
收藏 引用
22nd ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (ACM MSWiM)
作者: Zhu, Dali Xi, Tong Jing, Pengfei Wu, Di Xia, Qing Zhang, Yiming Chinese Acad Sci Inst Informat Engn Beijing Peoples R China Univ Chinese Acad Sci Sch Cyber Secur Beijing Peoples R China Chinese Acad Sci Inst Software Beijing Peoples R China
While recent works have shown that deep learning method can improve the malware classification accuracy, the lack of the transparency has restricted its application in anti-virus scan engines. Existing researches have... 详细信息
来源: 评论
Using AI to Detect android malware Families  20
Using AI to Detect Android Malware Families
收藏 引用
20th International Conference on the Design of Reliable Communication Networks (DRCN)
作者: Alrabaee, Saed Al-kfairy, Mousa Taha, Mohammad Bany Alfandi, Omar Taher, Fatma El Fiky, Ahmed Hashem UAE Univ Coll IT Al Ain U Arab Emirates Zayed Univ Coll Technol Innovat Abu Dhabi U Arab Emirates Amer Univ Madaba Data Sci & Artificial Intelligence Madaba Jordan VERN Univ Appl Sci Business Adm Zagreb Croatia
In today's digital era, many smartphone users often overlook security measures when installing apps, leaving android devices particularly vulnerable to malware threats. Addressing this critical issue, there is a s... 详细信息
来源: 评论
cTIMS: Correlated Textual and Image based Metrics Suites for Assessing GAN-Synthesized android malware Images  29
cTIMS: Correlated Textual and Image based Metrics Suites for...
收藏 引用
29th Pacific Rim International Symposium on Dependable Computing
作者: Arifin, Md Mashrur Yeh, Jyh-haw Boise State Univ Comp Sci Dept Boise ID 83725 USA
Generative Adversarial Networks (GANs) have revolutionized the generation of synthetic malware images, providing significant applications in cybersecurity. Traditional image-based metrics such as Inception Score (IS) ... 详细信息
来源: 评论
A Comprehensive Review on Machine Learning and Deep Learning Based malware detection Methods  2
A Comprehensive Review on Machine Learning and Deep Learning...
收藏 引用
2nd IEEE International Conference on Emerging Research in Computational Science, ICERCS 2024
作者: Ganesamoorthi, Mahesh Subramanian, Kannimuthu Bhanu, D. Expedia Group Seattle United States Karpagam College of Engineering Coimbatore India Karpagam Institute of Technology Coimbatore India
malware detection has become a significant aspect of cybersecurity, specifically with the widespread use of android devices. Conventional malware detection methods, such as static and signature-based approaches have b... 详细信息
来源: 评论
A Formal Method for Description and Decision of android Apps Behavior Based on Process Algebra
收藏 引用
IEEE ACCESS 2022年 10卷 108668-108683页
作者: Liang, Dongkui Shen, Limin Chen, Zhen Ma, Chuan Feng, Jiayin Yanshan Univ Sch Informat Sci & Engn Qinhuangdao 066004 Hebei Peoples R China Yanshan Univ Engn Training Ctr Qinhuangdao 066004 Hebei Peoples R China
android is the most popular mobile platform, and it has become a primary malware target. Existing behavior-based android malware detection methods suffer from false positive and false negative problems, which lead to ... 详细信息
来源: 评论
An efficient malware detection approach with feature weighting based on Harris Hawks optimization
收藏 引用
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS 2022年 第4期25卷 2369-2387页
作者: Alzubi, Omar A. Alzubi, Jafar A. Al-Zoubi, Ala' M. Hassonah, Mohammad A. Kose, Utku Al Balqa Appl Univ Prince Abdullah Bin Ghazi Fac Informat & Commun T Al Salt Jordan Al Balqa Appl Univ Fac Engn Al Salt Jordan Univ Granada Sch Sci Technol & Engn Granada Spain Suleyman Demirel Univ Dept Comp Engn Isparta Turkey
This paper introduces and tests a novel machine learning approach to detect android malware. The proposed approach is composed of Support Vector Machine (SVM) classifier and Harris Hawks Optimization (HHO) algorithm. ... 详细信息
来源: 评论
AProctor - A practical on-device antidote for android malware  23
AProctor - A practical on-device antidote for Android malwar...
收藏 引用
Australian Computer Science Week (ACSW)
作者: Patel, Akash Kumar, Nitesh Handa, Anand Shukla, Sandeep K. IIT Kanpur C3i Ctr Kanpur India
As the number of smartphone users increases, the attacker's interest in breaching android security also increases. To protect the user from malware attacks and enhance his mobile security, we present AProctor, an ... 详细信息
来源: 评论
Unveiling vulnerabilities in deep learning-based malware detection: Differential privacy driven adversarial attacks
收藏 引用
COMPUTERS & SECURITY 2024年 146卷
作者: Taheri, Rahim Shojafar, Mohammad Arabikhan, Farzad Gegov, Alexander Univ Portsmouth Fac Technol Sch Comp Portsmouth England Univ Surrey Inst Commun Syst 5G & 6G Innovat Ctr 5G 6GIC Guildford England
The exponential increase of android malware creates a severe threat, motivating the development of machine learning and especially deep learning-based classifiers to detect and mitigate malicious applications. However... 详细信息
来源: 评论
Strengthening LLM ecosystem security: Preventing mobile malware from manipulating LLM-based applications
收藏 引用
INFORMATION SCIENCES 2024年 681卷
作者: Huang, Lu Xue, Jingfeng Wang, Yong Chen, Junbao Lei, Tianwei Beijing Inst Technol Beijing 100081 Peoples R China
Large language model (LLM) platform vendors have begun to make their models available for developers to build for different use cases. However, the emergence of LLM-based applications may raise security and privacy is... 详细信息
来源: 评论