咨询与建议

限定检索结果

文献类型

  • 129 篇 期刊文献
  • 87 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 218 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 207 篇 工学
    • 187 篇 计算机科学与技术...
    • 71 篇 电气工程
    • 56 篇 信息与通信工程
    • 38 篇 软件工程
    • 13 篇 控制科学与工程
    • 5 篇 网络空间安全
    • 3 篇 仪器科学与技术
    • 2 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
  • 19 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 12 篇 理学
    • 10 篇 化学
    • 3 篇 生物学
    • 2 篇 数学
  • 3 篇 农学
    • 3 篇 水产
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 218 篇 android malware ...
  • 63 篇 machine learning
  • 30 篇 deep learning
  • 29 篇 static analysis
  • 19 篇 feature extracti...
  • 17 篇 mobile security
  • 15 篇 malware
  • 11 篇 feature selectio...
  • 9 篇 graph neural net...
  • 9 篇 function call gr...
  • 7 篇 classification
  • 6 篇 ensemble learnin...
  • 5 篇 malware classifi...
  • 5 篇 adversarial mach...
  • 5 篇 semantics
  • 5 篇 smart phones
  • 5 篇 codes
  • 5 篇 security
  • 5 篇 artificial intel...
  • 5 篇 concept drift

机构

  • 5 篇 chinese acad sci...
  • 5 篇 univ chinese aca...
  • 4 篇 univ elect sci &...
  • 3 篇 univ sci & techn...
  • 3 篇 beijing univ tec...
  • 3 篇 harbin inst tech...
  • 3 篇 sichuan univ sch...
  • 3 篇 southwest univ s...
  • 3 篇 beijing univ pos...
  • 3 篇 west virginia un...
  • 2 篇 shandong prov ke...
  • 2 篇 hong kong polyte...
  • 2 篇 cheikh anta diop...
  • 2 篇 natl taiwan univ...
  • 2 篇 tsinghua univ de...
  • 2 篇 shandong univ pe...
  • 2 篇 fujian normal un...
  • 2 篇 univ basque coun...
  • 2 篇 univ basque coun...
  • 2 篇 xinjiang univ sc...

作者

  • 5 篇 ye yanfang
  • 5 篇 hou shifu
  • 4 篇 yuan wei
  • 4 篇 ouya samuel
  • 4 篇 zhu dali
  • 4 篇 vinod p.
  • 4 篇 zhang yiming
  • 3 篇 xue jingfeng
  • 3 篇 nazir ahsan
  • 3 篇 wajahat ahsan
  • 3 篇 wang ruoyu
  • 3 篇 chen zhenxiang
  • 3 篇 moonsamy veelash...
  • 3 篇 ge xiuting
  • 3 篇 mahmood tariq
  • 3 篇 li heng
  • 3 篇 conti mauro
  • 3 篇 luo xiapu
  • 3 篇 sezer sakir
  • 3 篇 bostani hamid

语言

  • 216 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"主题词=Android Malware Detection"
218 条 记 录,以下是171-180 订阅
排序:
MulAV: Multilevel and Explainable detection of android malware with Data Fusion  18th
MulAV: Multilevel and Explainable Detection of Android Malwa...
收藏 引用
18th International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP)
作者: Li, Qun Chen, Zhenxiang Yan, Qiben Wang, Shanshan Ma, Kun Shi, Yuliang Cui, Lizhen Univ Jinan Sch Informat Sci & Engn Jinan 250022 Shandong Peoples R China Shandong Prov Key Lab Network Based Intelligent C Jinan 250022 Shandong Peoples R China Univ Nebraska Lincoln NE USA Shandong Univ Jinan 250101 Shandong Peoples R China
With the popularization of smartphones, the number of mobile applications has grown substantially. However, many malware are emerging and thus pose a serious threat to the user's mobile phones. malware detection h... 详细信息
来源: 评论
RepassDroid: Automatic detection of android malware Based on Essential Permissions and Semantic Features of Sensitive APIs  12
RepassDroid: Automatic Detection of Android Malware Based on...
收藏 引用
International Symposium on Theoretical Aspects of Software Engineering (TASE)
作者: Xie, Niannian Zeng, Fanping Qin, Xiaoxia Zhang, Yu Zhou, Mingsong Lv, Chengcheng Univ Sci & Technol China Sch Comp Sci & Technol Hefei Anhui Peoples R China Anhui Prov Key Lab Software Comp & Commun Hefei Anhui Peoples R China
Most current literature on android malware pays particular attention to the features of applications. Much of them focus on permissions or APIs, neglecting the behavioral semantics of applications, and the literature ... 详细信息
来源: 评论
Features Extraction from android Apps Using Reverse Engineering  6th
Features Extraction from Android Apps Using Reverse Enginee...
收藏 引用
6th International Conference on Computational Intelligence in Communications and Business Analytics, CICBA 2024
作者: Banik, Abhinandan Singh, Jyoti Prakash Department of Computer Science and Engineering National Institute of Technology Patna Patna India
In this ubiquitous age of mobile phones, android malware is a growing threat to mobile users. The most common malware detection technique is analyzing different features that any android app encompasses. However, malw... 详细信息
来源: 评论
NADM: Neural Network for android detection malware  18
NADM: Neural Network for Android Detection Malware
收藏 引用
9th International Symposium on Information and Communication Technology (SoICT)
作者: Nguyen Viet Duc Pham Thanh Giang Vietnam Acad Sci & Technol Inst Informat Technol Hanoi Vietnam
Over recent years, android is always captured roughly 80% of the worldwide smartphone volume. Due to its popularity and open characteristic, the android OS is becoming the system platform most targeted from mobile mal... 详细信息
来源: 评论
Visualizing android Malicious Applications Using Texture Features
收藏 引用
INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS 2023年 第6期23卷 2350052-2350052页
作者: Sharma, Tejpal Rattan, Dhavleesh Punjabi Univ Patiala Dept Comp Sci & Engn Patiala 147002 Punjab India CGC Coll Engn Dept Comp Sci & Engn Landran Mohali 140307 Punjab India
Context: Due to the change and advancement in technology, day by day the internet service usages are also increasing. Smartphones have become the necessity for every person these days. It is used to perform all basic ... 详细信息
来源: 评论
Machine learning approach to detect android malware using feature-selection based on feature importance score
Journal of Engineering Research (Kuwait)
收藏 引用
Journal of Engineering Research (Kuwait) 2024年
作者: Pathak, Amarjyoti Barman, Utpal Kumar, Th. Shanta Research Scholar GIMT Guwahati Under Assam Science and Technology University Jalukbari Assam Guwahati 781017 India Faculty of Computer Technology Assam Down Town University Assam Guwahati 781026 India Department of CSE GIMT Assam Guwahati 781017 India
The hazards posed by malware are proliferating along with technology's rapid advancement and the use of online services. Specifically, attacks on android devices are growing enormously because of the boost in the ... 详细信息
来源: 评论
MalDuoNet: A DualNet Framework to Detect android malware  15
MalDuoNet: A DualNet Framework to Detect Android Malware
收藏 引用
15th RIVF International Conference on Computing and Communication Technologies (RIVF)
作者: Palikhe, Aayasha Li, Longzhuang Tian, Feng Kar, Dulal Zhang, Ning Zhang, Wen Texas A&M Univ Corpus Christi Deptt Comp Sci Corpus Christi TX 78412 USA Texas A&M Univ Corpus Christi Dept Comp Sci Corpus Christi TX 78412 USA Xi An Jiao Tong Univ Sch Automat Sci & Engr Xian 710049 Shaanxi Peoples R China Univ Windsor Elect & Comp Engn 401 Sunset Ave Windsor ON Canada
Today mobile phones provide a wide range of applications that make our daily life easy. With popularity, smartphones have become a target for cybercrime where malicious apps are developed to acquire sensitive informat... 详细信息
来源: 评论
GraphEvolveDroid: Mitigate Model Degradation in the Scenario of android Ecosystem Evolution  21
GraphEvolveDroid: Mitigate Model Degradation in the Scenario...
收藏 引用
30th ACM International Conference on Information and Knowledge Management (CIKM)
作者: Gu, Yonghao Li, Liangxun Beijing Univ Posts & Telecommun Beijing Key Lab Intelligent Telecommun Software & Sch Comp Sci Beijing Peoples R China Sun Yat Sen Univ Guangdong Prov Key Lab Informat Secur Technol Guangzhou Peoples R China
Machine learning-based android malware detection models suffer from model degradation over time due to ecosystem evolution, which means models trained on history data perform poorly on newly arrived data. Existing sol... 详细信息
来源: 评论
A feature selection technique based on rough set and improvised PSO algorithm (PSORS-FS) for permission based detection of android malwares
收藏 引用
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS 2019年 第7期10卷 1893-1907页
作者: Bhattacharya, Abhishek Goswami, Radha Tamal Mukherjee, Kuntal Inst Engn & Management Kolkata W Bengal India Techno India Coll Technol Kolkata W Bengal India Birla Inst Technol Mesra Jharkhand India
The set of permissions required by any android app during installation time is considered as the feature set which are used in permission based detection of android malwares. Those high dimensional feature set should ... 详细信息
来源: 评论
Vulnerability Evaluation of android malware Detectors against Adversarial Examples  25
Vulnerability Evaluation of Android Malware Detectors agains...
收藏 引用
25th KES International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES)
作者: Ijas, A. H. Vinod, P. Zemmari, Akka Harikrishnan Poulose, Godvin Jose, Don Mercaldo, Francesco Martinelli, Fabio Santone, Antonella SCMS Sch Engn & Technol Dept Comp Sci & Engn Ernakulam India Cochin Univ Sci & Technol Dept Comp Applicat Cochin Kerala India Univ Bordeaux LaBRI CNRS Bordeaux France Univ Molise Campobasso Italy IIT CNR Pisa Italy
In this paper, we evaluate the performance of machine learning classifiers (Logistic Regression, CART, Random Forest) by fabricating adversarial examples (malware samples) statistically identical to goodware. To this ... 详细信息
来源: 评论