咨询与建议

限定检索结果

文献类型

  • 124 篇 期刊文献
  • 87 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 213 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 203 篇 工学
    • 183 篇 计算机科学与技术...
    • 67 篇 电气工程
    • 54 篇 信息与通信工程
    • 39 篇 软件工程
    • 14 篇 控制科学与工程
    • 6 篇 网络空间安全
    • 3 篇 仪器科学与技术
    • 2 篇 机械工程
    • 2 篇 石油与天然气工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
  • 20 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
    • 1 篇 公共管理
  • 13 篇 理学
    • 10 篇 化学
    • 3 篇 数学
    • 3 篇 生物学
  • 2 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 公共卫生与预防医...
  • 1 篇 农学
    • 1 篇 水产

主题

  • 213 篇 android malware ...
  • 62 篇 machine learning
  • 30 篇 deep learning
  • 29 篇 static analysis
  • 18 篇 feature extracti...
  • 17 篇 mobile security
  • 14 篇 malware
  • 11 篇 feature selectio...
  • 9 篇 function call gr...
  • 8 篇 graph neural net...
  • 7 篇 classification
  • 6 篇 ensemble learnin...
  • 5 篇 malware classifi...
  • 5 篇 semantics
  • 5 篇 smart phones
  • 5 篇 codes
  • 5 篇 artificial intel...
  • 5 篇 training
  • 5 篇 convolutional ne...
  • 5 篇 dynamic analysis

机构

  • 5 篇 chinese acad sci...
  • 5 篇 univ chinese aca...
  • 3 篇 univ sci & techn...
  • 3 篇 beijing univ tec...
  • 3 篇 harbin inst tech...
  • 3 篇 southwest univ s...
  • 3 篇 beijing univ pos...
  • 3 篇 univ elect sci &...
  • 3 篇 west virginia un...
  • 2 篇 shandong prov ke...
  • 2 篇 hong kong polyte...
  • 2 篇 cheikh anta diop...
  • 2 篇 natl taiwan univ...
  • 2 篇 tsinghua univ de...
  • 2 篇 shandong univ pe...
  • 2 篇 fujian normal un...
  • 2 篇 univ basque coun...
  • 2 篇 univ basque coun...
  • 2 篇 xinjiang univ sc...
  • 2 篇 south china univ...

作者

  • 5 篇 ye yanfang
  • 5 篇 hou shifu
  • 4 篇 yuan wei
  • 4 篇 ouya samuel
  • 4 篇 zhu dali
  • 4 篇 vinod p.
  • 4 篇 zhang yiming
  • 3 篇 xue jingfeng
  • 3 篇 nazir ahsan
  • 3 篇 wajahat ahsan
  • 3 篇 wang ruoyu
  • 3 篇 chen zhenxiang
  • 3 篇 ge xiuting
  • 3 篇 mahmood tariq
  • 3 篇 li heng
  • 3 篇 conti mauro
  • 3 篇 luo xiapu
  • 3 篇 sezer sakir
  • 3 篇 liu zhen
  • 3 篇 wu di

语言

  • 211 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"主题词=Android Malware Detection"
213 条 记 录,以下是61-70 订阅
排序:
An android malware detection Approach Using Bayesian Inference  16
An Android Malware Detection Approach Using Bayesian Inferen...
收藏 引用
IEEE International Conference on Computer and Information Technology (CIT)
作者: Liu, Che-Hsun Zhang, Zhi-Jie Wang, Sheng-De Natl Taiwan Univ Grad Inst Elect Engn Taipei 10617 Taiwan
android malware detection has been a popular research topic due to non-negligible amount of malware targeting the android operating system. In particular, the naive Bayes generative classifier is a common technique wi... 详细信息
来源: 评论
android malware detection as a Bi-level problem
收藏 引用
COMPUTERS & SECURITY 2022年 121卷
作者: Jerbi, Manel Dagdia, Zaineb Chelly Bechikh, Slim Ben Said, Lamjed Univ Tunis SMART Lab ISG Campus Tunis Tunisia Univ Paris Saclay UVSQ DAVID Gif Sur Yvette France Inst Super Gest Tunis LARODEC Tunis Tunisia
malware detection is still a very challenging topic in the cybersecurity field. This is mainly due to the use of obfuscation techniques. To solve this issue, researchers proposed to extract frequent API (Application P... 详细信息
来源: 评论
ANALYSIS OF FEATURES SELECTION AND MACHINE LEARNING CLASSIFIER IN android malware detection
ANALYSIS OF FEATURES SELECTION AND MACHINE LEARNING CLASSIFI...
收藏 引用
5th International Conference on Information Science and Applications (ICISA)
作者: Mas'ud, Mohd Zaki Sahib, Shahrin Abdollah, Mohd Faizal Selamat, Siti Rahayu Yusof, Robiah Univ Teknikal Malaysia Melaka Fac Informat Technol & Commun Durian Tunggal 76100 Melaka Malaysia
The proliferation of android-based mobile devices and mobile applications in the market has triggered the malware author to make the mobile devices as the next profitable target. With user are now able to use mobile d... 详细信息
来源: 评论
SADroid: A Deep Classification Model for android malware detection Based on Semantic Analysis
SADroid: A Deep Classification Model for Android Malware Det...
收藏 引用
IEEE Wireless Communications and Networking Conference (IEEE WCNC)
作者: Zhu, Dali Xi, Tong Jing, Pengfei Xia, Qing Wu, Di Zhang, Yiming Chinese Acad Sci Inst Informat Engn Beijing Peoples R China Univ Chinese Acad Sci Sch Cyber Secur Beijing Peoples R China Univ Chinese Acad Sci Sch Comp Sci & Technol Beijing Peoples R China
Previous works have designed many deep learning models for android malware detection using various features (e.g. permissions, APIs et.) to achieve better classification performance. However, these methods usually inp... 详细信息
来源: 评论
Enhanced android malware detection: An SVM-based Machine Learning Approach
Enhanced Android Malware Detection: An SVM-based Machine Lea...
收藏 引用
IEEE International Conference on Big Data and Smart Computing (BigComp)
作者: Han, Hyoil Lim, SeungJin Suh, Kyoungwon Park, Seonghyun Cho, Seong-je Park, Minkyu Illinois State Univ Sch Informat Technol Normal IL 61761 USA Merrimack Coll Dept Comp Sci N Andover MA 01845 USA Dankook Univ Dept Appl Comp Engn Yongin South Korea Dankook Univ Dept Comp Sci & Engn Yongin South Korea Konkuk Univ Dept Software Technol Chungju South Korea
The cybersecurity of increasing numbers of mobile devices and their users are threatened by malicious applications. Detecting malicious android applications is a challenge due to the massive number of android applicat... 详细信息
来源: 评论
Defensive Randomization Against Adversarial Attacks in Image-based android malware detection
Defensive Randomization Against Adversarial Attacks in Image...
收藏 引用
IEEE International Conference on Communications (IEEE ICC)
作者: Lan, Tianwei Darwaish, Asim Nait-Abdesselam, Farid Gu, Pengwenlong Univ Paris Cite Paris France Univ Missouri Kansas City MO 64110 USA Inst Polytech Paris Telecom Paris LTCI Paris France
The extensive popularity of android operating system hones the increased malware attacks and threatens the android ecosystem. Machine learning is one of the versatile tools to detect legacy and new malware with high a... 详细信息
来源: 评论
Effectiveness of Video-Classification in android malware detection Through API-Streams and CNN-LSTM Autoencoders  5th
Effectiveness of Video-Classification in Android Malware Det...
收藏 引用
5th International Symposium on Mobile Internet Security (MobiSec)
作者: D'Angelo, Gianni Palmieri, Francesco Robustelli, Antonio Univ Salerno Dept Comp Sci Fisciano Italy
The outbreak of the COVID-19 pandemic has forced worldwide employees to massive use of their mobile devices to access corporate systems. This new scenario has made mobile devices more susceptible to malicious applicat... 详细信息
来源: 评论
An Analysis on Different Distance Measures in KNN with PCA for android malware detection  22
An Analysis on Different Distance Measures in KNN with PCA f...
收藏 引用
22nd International Conference on Advances in ICT for Emerging Regions (ICTer)
作者: Dissanayake, Sayuru Gunathunga, Sankha Jayanetti, Dimalka Perera, Kavindu Liyanapathirana, Chethana Rupasinghe, Lakmal Sri Lanka Inst Informat Technol Fac Comp Malabe Sri Lanka
As Majority of the market is presently occupied by android consumers, android operating system is a prominent target for intruders. This research shows a dynamic android malware detection approach that classifies dang... 详细信息
来源: 评论
MalWhiteout: Reducing Label Errors in android malware detection  7
MalWhiteout: Reducing Label Errors in Android Malware Detect...
收藏 引用
37th IEEE/ACM International Conference on Automated Software Engineering (ASE)
作者: Wang, Liu Wang, Haoyu Luo, Xiapu Sui, Yulei Huazhong Univ Sci & Technol Sch Cyber Sci & Engn Wuhan Peoples R China Hong Kong Polytechn Univ Hong Kong Peoples R China Univ Technol Sydney Sydney NSW Australia
Machine learning based android malware detection has attracted a great deal of research work in recent years. A reliable malware dataset is critical to evaluate the effectiveness of malware detection approaches. Unfor... 详细信息
来源: 评论
An Image-inspired and CNN-based android malware detection Approach  34
An Image-inspired and CNN-based Android Malware Detection Ap...
收藏 引用
34th IEEE/ACM International Conference on Automated Software Engineering (ASE)
作者: Yang, Shao Case Western Reserve Univ Dept Elect Engn & Comp Sci Cleveland OH 44106 USA
Until 2017, android smartphones occupied approximately 87% of the smartphone market. The vast market also promotes the development of android malware. Nowadays, the number of malware targeting android devices found da... 详细信息
来源: 评论