咨询与建议

限定检索结果

文献类型

  • 124 篇 期刊文献
  • 87 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 213 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 203 篇 工学
    • 183 篇 计算机科学与技术...
    • 67 篇 电气工程
    • 54 篇 信息与通信工程
    • 39 篇 软件工程
    • 14 篇 控制科学与工程
    • 6 篇 网络空间安全
    • 3 篇 仪器科学与技术
    • 2 篇 机械工程
    • 2 篇 石油与天然气工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
  • 20 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
    • 1 篇 公共管理
  • 13 篇 理学
    • 10 篇 化学
    • 3 篇 数学
    • 3 篇 生物学
  • 2 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 公共卫生与预防医...
  • 1 篇 农学
    • 1 篇 水产

主题

  • 213 篇 android malware ...
  • 62 篇 machine learning
  • 30 篇 deep learning
  • 29 篇 static analysis
  • 18 篇 feature extracti...
  • 17 篇 mobile security
  • 14 篇 malware
  • 11 篇 feature selectio...
  • 9 篇 function call gr...
  • 8 篇 graph neural net...
  • 7 篇 classification
  • 6 篇 ensemble learnin...
  • 5 篇 malware classifi...
  • 5 篇 semantics
  • 5 篇 smart phones
  • 5 篇 codes
  • 5 篇 artificial intel...
  • 5 篇 training
  • 5 篇 convolutional ne...
  • 5 篇 dynamic analysis

机构

  • 5 篇 chinese acad sci...
  • 5 篇 univ chinese aca...
  • 3 篇 univ sci & techn...
  • 3 篇 beijing univ tec...
  • 3 篇 harbin inst tech...
  • 3 篇 southwest univ s...
  • 3 篇 beijing univ pos...
  • 3 篇 univ elect sci &...
  • 3 篇 west virginia un...
  • 2 篇 shandong prov ke...
  • 2 篇 hong kong polyte...
  • 2 篇 cheikh anta diop...
  • 2 篇 natl taiwan univ...
  • 2 篇 tsinghua univ de...
  • 2 篇 shandong univ pe...
  • 2 篇 fujian normal un...
  • 2 篇 univ basque coun...
  • 2 篇 univ basque coun...
  • 2 篇 xinjiang univ sc...
  • 2 篇 south china univ...

作者

  • 5 篇 ye yanfang
  • 5 篇 hou shifu
  • 4 篇 yuan wei
  • 4 篇 ouya samuel
  • 4 篇 zhu dali
  • 4 篇 vinod p.
  • 4 篇 zhang yiming
  • 3 篇 xue jingfeng
  • 3 篇 nazir ahsan
  • 3 篇 wajahat ahsan
  • 3 篇 wang ruoyu
  • 3 篇 chen zhenxiang
  • 3 篇 ge xiuting
  • 3 篇 mahmood tariq
  • 3 篇 li heng
  • 3 篇 conti mauro
  • 3 篇 luo xiapu
  • 3 篇 sezer sakir
  • 3 篇 liu zhen
  • 3 篇 wu di

语言

  • 211 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"主题词=Android Malware Detection"
213 条 记 录,以下是71-80 订阅
排序:
FSNet: android malware detection with Only One Feature
FSNet: Android Malware Detection with Only One Feature
收藏 引用
IEEE Symposium on Computers and Communications (ISCC)
作者: Zhu, Dali Ma, Yuchen Xi, Tong Zhang, Yiming Chinese Acad Sci Inst Informat Engn Beijing Peoples R China Univ Chinese Acad Sci Sch Cyber Secur Beijing Peoples R China
Traditional android malware detection based on static analysis are experience-driven rule writing and feature engineering methods. Such methods only analyze the combination relationship or weight between rules and fea... 详细信息
来源: 评论
MASKDROID: Robust android malware detection with Masked Graph Representations  24
MASKDROID: Robust Android Malware Detection with Masked Grap...
收藏 引用
39th ACM/IEEE International Conference on Automated Software Engineering (ASE)
作者: Zheng, Jingnan Liu, Jiaohao Zhang, An Zeng, Jun Yang, Ziqi Liang, Zhenkai Chua, Tat-Seng Natl Univ Singapore Singapore Singapore Zhejiang Univ Hangzhou Peoples R China State Key Lab Blockchain & Secur Hangzhou Peoples R China Hangzhou High Tech Zone Binjiang Inst Blockchain Hangzhou Peoples R China
android malware attacks have posed a severe threat to mobile users, necessitating a significant demand for the automated detection system. Among the various tools employed in malware detection, graph representations (... 详细信息
来源: 评论
Structural Attack against Graph Based android malware detection  21
Structural Attack against Graph Based Android Malware Detect...
收藏 引用
ACM SIGSAC Conference on Computer and Communications Security (ACM CCS)
作者: Zhao, Kaifa Zhou, Hao Zhu, Yulin Zhan, Xian Zhou, Kai Li, Jianfeng Yu, Le Yuan, Wei Luo, Xiapu Hong Kong Polytech Univ Hong Kong Peoples R China Huazhong Univ Sci & Technol Wuhan Peoples R China
malware detection techniques achieve great success with deeper insight into the semantics of malware. Among existing detection techniques, function call graph (FCG) based methods achieve promising performance due to t... 详细信息
来源: 评论
FgDetector: Fine-grained android malware detection  2
FgDetector: Fine-grained Android Malware Detection
收藏 引用
2nd IEEE International Conference on Data Science in Cyberspace (DSC)
作者: Li, Dongfang Wang, Zhaoguo Li, Lixin Wang, Zhihua Wang, Yucheng Xue, Yibo Tsinghua Univ Dept Comp Sci & Technol Beijing Peoples R China Harbin Inst Technol Sch Comp Sci & Technol Harbin Heilongjiang Peoples R China Tsinghua Univ Tsinghua Natl Lab Informat Sci & Tech Beijing Peoples R China Beijing Key Lab Power Dispatching Automat Technol Beijing Peoples R China China Elect Power Res Inst Beijing Peoples R China State Grid Shanghai Municipal Elect Power Co Shanghai Peoples R China
Smartphones are rapidly becoming a necessity in our lives and android is one of the most popular mobile operating systems. However, a large number of android malicious applications hidden behind the benign application... 详细信息
来源: 评论
Towards Multi-view android malware detection Through Image-based Deep Learning  18
Towards Multi-view Android Malware Detection Through Image-b...
收藏 引用
18th IEEE International Wireless Communications and Mobile Computing Conference (IWCMC)
作者: Geremias, Jhonatan Viegas, Eduardo K. Santin, Altair O. Britto, Alceu Horchulhack, Pedro Pontificia Univ Catolica Parana PUCPR Grad Program Comp Sci PPGIa Curitiba Parana Brazil Secure Syst Res Ctr Technol Innovat Inst TII Abu Dhabi U Arab Emirates
Over the last years, several works have proposed highly accurate android malware detection techniques. Surprisingly, modern malware apps can still pave their way to official markets, thus, demanding the provision of m... 详细信息
来源: 评论
Research on Data Drift and Class Imbalance in android malware detection  20th
Research on Data Drift and Class Imbalance in Android Malwar...
收藏 引用
20th EAI International Conference on Mobile and Ubiquitous Systems - Computing Networking and Services (EAI MobiQuitous)
作者: Liu, Zhen Wang, Ruoyu Peng, Bitao Wang, Changji Gan, Qingqing Guangdong Univ Foreign Studies Sch Informat Sci & Technol Guangzhou 510006 Peoples R China South China Univ Technol Informat & Network Engn Res Ctr Guangzhou 510041 Peoples R China
In the android ecosystem, malware detection is still a nontrivial task. Existing works have recently applied convolution neural networks (CNNs) for detecting android malwares. However, data drift and class imbalance a... 详细信息
来源: 评论
AMDroid: android malware detection Using Function Call Graphs  19
AMDroid: Android Malware Detection Using Function Call Graph...
收藏 引用
19th IEEE International Conference on Software Quality, Reliability and Security (QRS)
作者: Ge, Xiuting Pan, Ya Fang, Chunrong Fan, Yong Southwest Univ Sci & Technol Dept Comp Sci & Technol Mianyang Sichuan Peoples R China Nanjing Univ Software Inst Nanjing Peoples R China
With the rapid development of the mobile Internet, android has been the most popular mobile operating system. Due to the open nature of android, countless malicious applications are hidden in a large number of benign ... 详细信息
来源: 评论
DroidDelver: An android malware detection System Using Deep Belief Network Based on API Call Blocks  17th
DroidDelver: An Android Malware Detection System Using Deep ...
收藏 引用
17th International Conference on Web-Age Information Management (WAIM)
作者: Hou, Shifu Saas, Aaron Ye, Yanfang Chen, Lifei West Virginia Univ Dept Comp Sci & Elect Engn Morgantown WV 26506 USA Fujian Normal Univ Sch Math & Comp Sci Fuzhou 350117 Peoples R China
Because of the explosive growth of android malware and due to the severity of its damages, the detection of android malware has become an increasing important topic in cyber security. Currently, the major defense agai... 详细信息
来源: 评论
HinDroid: An Intelligent android malware detection System Based on Structured Heterogeneous Information Network  17
HinDroid: An Intelligent Android Malware Detection System Ba...
收藏 引用
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)
作者: Hou, Shifu Ye, Yanfang Song, Yangqiu Abdulhayoglu, Melih West Virginia Univ Dept CSEE Morgantown WV 26506 USA HKUST Dept CSE Hong Kong Peoples R China Comodo Secur Solut Inc Clinton NY USA
With explosive growth of android malware and due to the severity of its damages to smart phone users, the detection of android malware has become increasingly important in cybersecurity. The increasing sophistication ... 详细信息
来源: 评论
Robust android malware detection against Adversarial Example Attacks  21
Robust Android Malware Detection against Adversarial Example...
收藏 引用
30th World Wide Web Conference (WWW)
作者: Li, Heng Zhou, Shiyao Yuan, Wei Luo, Xiapu Gao, Cuiying Chen, Shuiyan Huazhong Univ Sci & Technol Wuhan Peoples R China Hong Kong Polytech Univ Hong Kong Peoples R China
Adversarial examples pose severe threats to android malware detection because they can render the machine learning based detection systems useless. How to effectively detect android malware under various adversarial e... 详细信息
来源: 评论