咨询与建议

限定检索结果

文献类型

  • 125 篇 期刊文献
  • 86 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 213 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 202 篇 工学
    • 182 篇 计算机科学与技术...
    • 68 篇 电气工程
    • 53 篇 信息与通信工程
    • 37 篇 软件工程
    • 12 篇 控制科学与工程
    • 5 篇 网络空间安全
    • 3 篇 仪器科学与技术
    • 2 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
  • 19 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 12 篇 理学
    • 10 篇 化学
    • 3 篇 生物学
    • 2 篇 数学
  • 1 篇 农学
    • 1 篇 水产
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 213 篇 android malware ...
  • 62 篇 machine learning
  • 30 篇 deep learning
  • 29 篇 static analysis
  • 18 篇 feature extracti...
  • 17 篇 mobile security
  • 14 篇 malware
  • 12 篇 feature selectio...
  • 9 篇 function call gr...
  • 8 篇 graph neural net...
  • 7 篇 classification
  • 6 篇 ensemble learnin...
  • 6 篇 smart phones
  • 5 篇 support vector m...
  • 5 篇 malware classifi...
  • 5 篇 semantics
  • 5 篇 codes
  • 5 篇 artificial intel...
  • 5 篇 training
  • 5 篇 convolutional ne...

机构

  • 5 篇 chinese acad sci...
  • 5 篇 univ chinese aca...
  • 3 篇 univ sci & techn...
  • 3 篇 beijing univ tec...
  • 3 篇 harbin inst tech...
  • 3 篇 southwest univ s...
  • 3 篇 beijing univ pos...
  • 3 篇 univ elect sci &...
  • 3 篇 west virginia un...
  • 2 篇 shandong prov ke...
  • 2 篇 hong kong polyte...
  • 2 篇 cheikh anta diop...
  • 2 篇 natl taiwan univ...
  • 2 篇 tsinghua univ de...
  • 2 篇 shandong univ pe...
  • 2 篇 fujian normal un...
  • 2 篇 univ basque coun...
  • 2 篇 univ basque coun...
  • 2 篇 xinjiang univ sc...
  • 2 篇 south china univ...

作者

  • 5 篇 ye yanfang
  • 5 篇 hou shifu
  • 4 篇 yuan wei
  • 4 篇 ouya samuel
  • 4 篇 zhu dali
  • 4 篇 vinod p.
  • 4 篇 zhang yiming
  • 3 篇 xue jingfeng
  • 3 篇 nazir ahsan
  • 3 篇 wajahat ahsan
  • 3 篇 wang ruoyu
  • 3 篇 chen zhenxiang
  • 3 篇 ge xiuting
  • 3 篇 mahmood tariq
  • 3 篇 li heng
  • 3 篇 conti mauro
  • 3 篇 luo xiapu
  • 3 篇 sezer sakir
  • 3 篇 liu zhen
  • 3 篇 wu di

语言

  • 212 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"主题词=Android Malware detection"
213 条 记 录,以下是1-10 订阅
排序:
android malware detection Through CNN Ensemble Learning on Grayscale Images
收藏 引用
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS 2025年 第1期16卷 1208-1217页
作者: Chaymae, El Youssofi Khalid, Chougdali Ibn Tofail Univ Engn Sci Lab Kenitra Morocco
android's widespread adoption as the leading mobile operating system, it has become a prominent target for malware attacks. Many of these attacks employ advanced obfuscation techniques, rendering traditional detec... 详细信息
来源: 评论
android malware detection based on feature fusion and the improved stacking ensemble model
收藏 引用
JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES 2025年 第1期21卷 1-15页
作者: Zhang, Jiahao Xu, Zijiong Xiong, Zhi Cai, Lingru Shantou Univ Dept Comp Sci & Technol Shantou 515063 Peoples R China
The widespread adoption of the android system has sharply increased malicious android applications, posing multifaceted threats to users. Given the problems of the single feature category and high computational overhe... 详细信息
来源: 评论
LDCDroid: Learning data drift characteristics for handling the model aging problem in android malware detection
收藏 引用
COMPUTERS & SECURITY 2025年 150卷
作者: Liu, Zhen Wang, Ruoyu Peng, Bitao Qiu, Lingyu Gan, Qingqing Wang, Changji Zhang, Wenbin Guangdong Univ Foreign Studies Sch Informat Sci & Technol Guangzhou 510006 Peoples R China South China Univ Technol Informat & Network Engn Res Ctr Guangzhou 510041 Peoples R China Guangdong Engn Res Ctr Data Secur Governance & Pri Guangzhou Peoples R China Guangdong Prov Key Lab Multimodal Big Data Intelli Guangzhou 510041 Peoples R China Florida Int Univ Knight Fdn Sch Comp & Informat Sci Miami FL 11200 USA
The dynamic and evolving nature of malware applications can lead to deteriorating performance in malware detection models, a phenomenon known as the model aging problem. This issue compromises the model's effectiv... 详细信息
来源: 评论
A Deep Learning-Based Ensemble Framework for Robust android malware detection
收藏 引用
IEEE ACCESS 2025年 13卷 46673-46696页
作者: Nethala, Sainag Chopra, Pronoy Kamaluddin, Khaja Alam, Shahid Alharbi, Soltan Alsaffar, Mohammad Splunk Inc San Francisco CA 95128 USA Amazon Irvine CA 92612 USA Aonsoft Int Inc Rolling Meadows IL 60008 USA Univ Hail Coll Comp Sci & Engn Hail 55473 Saudi Arabia Univ Jeddah Coll Engn Jeddah 23890 Saudi Arabia
The exponential growth of android applications has resulted in a surge of malware threats, posing severe risks to user privacy and data security. To address these challenges, this study introduces a novel malware dete... 详细信息
来源: 评论
AppPoet: Large language model based android malware detection via multi-view prompt engineering
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 262卷
作者: Zhao, Wenxiang Wu, Juntao Meng, Zhaoyi Univ Sci & Technol China Sch Management Hefei Peoples R China Anhui Univ Sch Comp Sci & Technol Hefei Peoples R China
Due to the vast array of android applications, their multifarious functions and intricate behavioral semantics, attackers can adopt various tactics to conceal their genuine attack intentions within legitimate function... 详细信息
来源: 评论
GBADroid: an android malware detection method based on multi-view feature fusion
收藏 引用
JOURNAL OF SUPERCOMPUTING 2025年 第3期81卷 1-32页
作者: Meng, Yi Luktarhan, Nurbol Yang, Xiaotong Zhao, Guodong Xinjiang Univ Sch Comp Sci & Technol Urumqi 830046 Xinjiang Peoples R China Xinjiang Univ Sch Software Urumqi 830091 Xinjiang Peoples R China
With the development of mobile internet, the open android operating system has become the most widely used mobile platform globally, leading to a surge in malware that poses serious threats to user device security. Cu... 详细信息
来源: 评论
FEdroid: a lightweight and interpretable machine learning-based android malware detection system
收藏 引用
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS 2025年 第4期28卷 1-21页
作者: Huang, Hong Huang, Weitao Zhou, Yinghang Luo, Wengang Wang, Yunfei Sichuan Univ Sci & Engn Sch Comp Sci & Engn Yibin 644000 Sichuan Peoples R China
android operating system, renowned for its open-source nature and flexibility, holds the largest global market share, yet faces significant security challenges, particularly from malware threats. Existing studies ofte... 详细信息
来源: 评论
PermGuard: A Scalable Framework for android malware detection Using Permission-to-Exploitation Mapping
收藏 引用
IEEE ACCESS 2025年 13卷 507-528页
作者: Prasad, Arvind Chandra, Shalini Uddin, Mueen Al-Shehari, Taher Alsadhan, Nasser A. Ullah, Syed Sajid GLA Univ Dept Comp Engn & Applicat Mathura 281406 India BBA Univ Dept Comp Sci Lucknow 226025 India Univ Doha Sci & Technol Coll Comp & Informat Technol Doha Qatar King Saud Univ Dept Self Dev Skill Comp Skills Common First Year Deanship Riyadh 11451 Saudi Arabia King Saud Univ Coll Comp & Informat Sci Comp Sci Dept Riyadh 11451 Saudi Arabia Univ Agder Dept Informat & Commun Technol N-4879 Grimstad Norway
android, the world's most widely used mobile operating system, is increasingly targeted by malware due to its open-source nature, high customizability, and integration with Google services. The increasing reliance... 详细信息
来源: 评论
Improving android malware detection in Imbalanced Data Scenarios  20th
Improving Android Malware Detection in Imbalanced Data Scena...
收藏 引用
20th IFIP WG 11.9 International Conference on Digital Forensics
作者: Qin, Shengzhi Chow, Kam-Pui Univ Hong Kong Hong Kong Peoples R China
The massive storage capacity of electronic devices has significantly increased the volume of evidentiary data encountered in digital forensic investigations. As a result, the automation of digital evidence analysis em... 详细信息
来源: 评论
Improving Adversarial Robustness in android malware detection by Reducing the Impact of Spurious Correlations  19th
Improving Adversarial Robustness in Android Malware Detecti...
收藏 引用
19th International Workshop on Data Privacy Management, DPM 2024, 8th International Workshop on Cryptocurrencies and Blockchain Technology, CBT 2024 and 10th Workshop on the Security of Industrial Control Systems and of Cyber-Physical Systems, CyberICPS 2024 which were held in conjunction with the 29th European Symposium on Research in Computer Security, ESORICS 2024
作者: Bostani, Hamid Zhao, Zhengyu Moonsamy, Veelasha Digital Security Group Institute for Computing and Information Sciences Radboud University Nijmegen Netherlands Faculty of Electronic and Information Engineering Xi’an Jiaotong University Xi’an China Horst Görtz Institute for IT Security Ruhr University Bochum Bochum Germany
Machine learning (ML) has demonstrated significant advancements in android malware detection (AMD);however, the resilience of ML against realistic evasion attacks remains a major obstacle for AMD. One of the primary f... 详细信息
来源: 评论