咨询与建议

限定检索结果

文献类型

  • 125 篇 期刊文献
  • 86 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 213 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 202 篇 工学
    • 182 篇 计算机科学与技术...
    • 68 篇 电气工程
    • 53 篇 信息与通信工程
    • 37 篇 软件工程
    • 12 篇 控制科学与工程
    • 5 篇 网络空间安全
    • 3 篇 仪器科学与技术
    • 2 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
  • 19 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 12 篇 理学
    • 10 篇 化学
    • 3 篇 生物学
    • 2 篇 数学
  • 1 篇 农学
    • 1 篇 水产
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 213 篇 android malware ...
  • 62 篇 machine learning
  • 30 篇 deep learning
  • 29 篇 static analysis
  • 18 篇 feature extracti...
  • 17 篇 mobile security
  • 14 篇 malware
  • 12 篇 feature selectio...
  • 9 篇 function call gr...
  • 8 篇 graph neural net...
  • 7 篇 classification
  • 6 篇 ensemble learnin...
  • 6 篇 smart phones
  • 5 篇 support vector m...
  • 5 篇 malware classifi...
  • 5 篇 semantics
  • 5 篇 codes
  • 5 篇 artificial intel...
  • 5 篇 training
  • 5 篇 convolutional ne...

机构

  • 5 篇 chinese acad sci...
  • 5 篇 univ chinese aca...
  • 3 篇 univ sci & techn...
  • 3 篇 beijing univ tec...
  • 3 篇 harbin inst tech...
  • 3 篇 southwest univ s...
  • 3 篇 beijing univ pos...
  • 3 篇 univ elect sci &...
  • 3 篇 west virginia un...
  • 2 篇 shandong prov ke...
  • 2 篇 hong kong polyte...
  • 2 篇 cheikh anta diop...
  • 2 篇 natl taiwan univ...
  • 2 篇 tsinghua univ de...
  • 2 篇 shandong univ pe...
  • 2 篇 fujian normal un...
  • 2 篇 univ basque coun...
  • 2 篇 univ basque coun...
  • 2 篇 xinjiang univ sc...
  • 2 篇 south china univ...

作者

  • 5 篇 ye yanfang
  • 5 篇 hou shifu
  • 4 篇 yuan wei
  • 4 篇 ouya samuel
  • 4 篇 zhu dali
  • 4 篇 vinod p.
  • 4 篇 zhang yiming
  • 3 篇 xue jingfeng
  • 3 篇 nazir ahsan
  • 3 篇 wajahat ahsan
  • 3 篇 wang ruoyu
  • 3 篇 chen zhenxiang
  • 3 篇 ge xiuting
  • 3 篇 mahmood tariq
  • 3 篇 li heng
  • 3 篇 conti mauro
  • 3 篇 luo xiapu
  • 3 篇 sezer sakir
  • 3 篇 liu zhen
  • 3 篇 wu di

语言

  • 212 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"主题词=Android Malware detection"
213 条 记 录,以下是91-100 订阅
排序:
Effectiveness of Video-Classification in android malware detection Through API-Streams and CNN-LSTM Autoencoders  5th
Effectiveness of Video-Classification in Android Malware Det...
收藏 引用
5th International Symposium on Mobile Internet Security (MobiSec)
作者: D'Angelo, Gianni Palmieri, Francesco Robustelli, Antonio Univ Salerno Dept Comp Sci Fisciano Italy
The outbreak of the COVID-19 pandemic has forced worldwide employees to massive use of their mobile devices to access corporate systems. This new scenario has made mobile devices more susceptible to malicious applicat... 详细信息
来源: 评论
SADroid: A Deep Classification Model for android malware detection Based on Semantic Analysis
SADroid: A Deep Classification Model for Android Malware Det...
收藏 引用
IEEE Wireless Communications and Networking Conference (IEEE WCNC)
作者: Zhu, Dali Xi, Tong Jing, Pengfei Xia, Qing Wu, Di Zhang, Yiming Chinese Acad Sci Inst Informat Engn Beijing Peoples R China Univ Chinese Acad Sci Sch Cyber Secur Beijing Peoples R China Univ Chinese Acad Sci Sch Comp Sci & Technol Beijing Peoples R China
Previous works have designed many deep learning models for android malware detection using various features (e.g. permissions, APIs et.) to achieve better classification performance. However, these methods usually inp... 详细信息
来源: 评论
Sensitivity Analysis of Static Features for android malware detection  22
Sensitivity Analysis of Static Features for Android Malware ...
收藏 引用
22nd Iranian Conference on Electrical Engineering (ICEE)
作者: Moghaddam, Samaneh Hosseini Abbaspour, Maghsood Shahid Beheshti Univ Fac Elect & Comp Engn Dept Comp Engn Network Secur LabGC Tehran Iran
The recent explosion of the number of mobile malware in the wild, significantly increases the importance of developing techniques to detect them. There are many published research in this area which employed tradition... 详细信息
来源: 评论
XGBoost-Based android malware detection  13
XGBoost-Based Android Malware Detection
收藏 引用
13th International Conference on Computational Intelligence and Security (CIS)
作者: Wang, Jiong Li, Boquan Zeng, Yuwei Chinese Acad Sci Inst Informat Engn Beijing 100093 Peoples R China Univ Chinese Acad Sci Sch Cyber Secur Beijing 100049 Peoples R China
malware remains the most significant security threat to smartphones in spite of the constantly upgrading of the system. In this paper, we introduce an android malware detection method based on XGBoost model. We subseq... 详细信息
来源: 评论
MASKDROID: Robust android malware detection with Masked Graph Representations  24
MASKDROID: Robust Android Malware Detection with Masked Grap...
收藏 引用
39th ACM/IEEE International Conference on Automated Software Engineering (ASE)
作者: Zheng, Jingnan Liu, Jiaohao Zhang, An Zeng, Jun Yang, Ziqi Liang, Zhenkai Chua, Tat-Seng Natl Univ Singapore Singapore Singapore Zhejiang Univ Hangzhou Peoples R China State Key Lab Blockchain & Secur Hangzhou Peoples R China Hangzhou High Tech Zone Binjiang Inst Blockchain Hangzhou Peoples R China
android malware attacks have posed a severe threat to mobile users, necessitating a significant demand for the automated detection system. Among the various tools employed in malware detection, graph representations (... 详细信息
来源: 评论
android malware detection Using Local Binary Pattern and Principal Component Analysis
Android Malware Detection Using Local Binary Pattern and Pri...
收藏 引用
The Third International Conference of Pioneering Computer Scientists, Engineers and Educators,ICPCSEE 2017(originally ICYCSEE)
作者: Qixin Wu Zheng Qin Jinxin Zhang Hui Yin Guangyi Yang Kuangsheng Hu College of Computer Science and Electronic Engineering Hunan University Hunan Key Laboratory of Big Data Research and Application Hunan Institute of Metrology and Test
Nowadays, analysis methods based on big data have been widely used in malicious software detection. Since android has become the dominator of smartphone operating system market, the number of android malicious applica... 详细信息
来源: 评论
Research and implementation of android malware detection algorithm based on Graph Convolutional Networks  24
Research and implementation of Android malware detection alg...
收藏 引用
International Conference on Algorithms, Software Engineering, and Network Security (ASENS)
作者: Wang, Yue Kezierbieke, Hailati Chen, Qinglin Xinjiang Univ Coll Software Urumqi 830046 Xinjiang Peoples R China Xinjiang Univ Coll Informat Sci & Engn Urumqi 830046 Xinjiang Peoples R China
android malware detection is one of the research hotspots in the field of malicious software. Traditional rule-based and feature-based methods face challenges in handling large-scale android malware detection. This pa... 详细信息
来源: 评论
AMDroid: android malware detection Using Function Call Graphs  19
AMDroid: Android Malware Detection Using Function Call Graph...
收藏 引用
19th IEEE International Conference on Software Quality, Reliability and Security (QRS)
作者: Ge, Xiuting Pan, Ya Fang, Chunrong Fan, Yong Southwest Univ Sci & Technol Dept Comp Sci & Technol Mianyang Sichuan Peoples R China Nanjing Univ Software Inst Nanjing Peoples R China
With the rapid development of the mobile Internet, android has been the most popular mobile operating system. Due to the open nature of android, countless malicious applications are hidden in a large number of benign ... 详细信息
来源: 评论
Dandroid: A Multi-View Discriminative Adversarial Network for Obfuscated android malware detection  20
DANdroid: A Multi-View Discriminative Adversarial Network fo...
收藏 引用
10th ACM Conference on Data and Application Security and Privacy (CODASPY)
作者: Millar, Stuart McLaughlin, Niall del Rincon, Jesus Martinez Miller, Paul Zhao, Ziming Queens Univ Belfast CSIT Belfast Antrim North Ireland Rochester Inst Technol CactiLab Rochester NY USA
We present Dandroid, a novel android malware detection model using a deep learning Discriminative Adversarial Network (DAN) that classifies both obfuscated and unobfuscated apps as either malicious or benign. Our meth... 详细信息
来源: 评论
Emulation Vs Instrumentation For android malware detection
Emulation Vs Instrumentation For Android Malware Detection
收藏 引用
作者: Anukriti Sinha San Jose State University
学位级别:硕士
In resource constrained devices, malware detection is typically based on offline analysis using emulation. In previous work it has been claimed that such emulation fails for a significant percentage of android malware... 详细信息
来源: 评论