咨询与建议

限定检索结果

文献类型

  • 128 篇 期刊文献
  • 86 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 216 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 206 篇 工学
    • 186 篇 计算机科学与技术...
    • 70 篇 电气工程
    • 55 篇 信息与通信工程
    • 38 篇 软件工程
    • 13 篇 控制科学与工程
    • 5 篇 网络空间安全
    • 3 篇 仪器科学与技术
    • 2 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
  • 19 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 12 篇 理学
    • 10 篇 化学
    • 3 篇 生物学
    • 2 篇 数学
  • 3 篇 农学
    • 3 篇 水产
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 216 篇 android malware ...
  • 62 篇 machine learning
  • 30 篇 deep learning
  • 29 篇 static analysis
  • 19 篇 feature extracti...
  • 17 篇 mobile security
  • 15 篇 malware
  • 11 篇 feature selectio...
  • 9 篇 graph neural net...
  • 9 篇 function call gr...
  • 7 篇 classification
  • 6 篇 ensemble learnin...
  • 5 篇 malware classifi...
  • 5 篇 adversarial mach...
  • 5 篇 semantics
  • 5 篇 smart phones
  • 5 篇 codes
  • 5 篇 security
  • 5 篇 artificial intel...
  • 5 篇 training

机构

  • 5 篇 chinese acad sci...
  • 5 篇 univ chinese aca...
  • 4 篇 univ elect sci &...
  • 3 篇 univ sci & techn...
  • 3 篇 beijing univ tec...
  • 3 篇 harbin inst tech...
  • 3 篇 sichuan univ sch...
  • 3 篇 southwest univ s...
  • 3 篇 beijing univ pos...
  • 3 篇 west virginia un...
  • 2 篇 shandong prov ke...
  • 2 篇 hong kong polyte...
  • 2 篇 cheikh anta diop...
  • 2 篇 natl taiwan univ...
  • 2 篇 tsinghua univ de...
  • 2 篇 shandong univ pe...
  • 2 篇 fujian normal un...
  • 2 篇 univ basque coun...
  • 2 篇 univ basque coun...
  • 2 篇 xinjiang univ sc...

作者

  • 5 篇 ye yanfang
  • 5 篇 hou shifu
  • 4 篇 yuan wei
  • 4 篇 ouya samuel
  • 4 篇 zhu dali
  • 4 篇 vinod p.
  • 4 篇 zhang yiming
  • 3 篇 xue jingfeng
  • 3 篇 nazir ahsan
  • 3 篇 wajahat ahsan
  • 3 篇 wang ruoyu
  • 3 篇 chen zhenxiang
  • 3 篇 moonsamy veelash...
  • 3 篇 ge xiuting
  • 3 篇 mahmood tariq
  • 3 篇 li heng
  • 3 篇 conti mauro
  • 3 篇 luo xiapu
  • 3 篇 sezer sakir
  • 3 篇 bostani hamid

语言

  • 215 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"主题词=Android malware detection"
216 条 记 录,以下是1-10 订阅
排序:
android malware detection Through CNN Ensemble Learning on Grayscale Images
收藏 引用
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS 2025年 第1期16卷 1208-1217页
作者: Chaymae, El Youssofi Khalid, Chougdali Ibn Tofail Univ Engn Sci Lab Kenitra Morocco
android's widespread adoption as the leading mobile operating system, it has become a prominent target for malware attacks. Many of these attacks employ advanced obfuscation techniques, rendering traditional detec... 详细信息
来源: 评论
android malware detection based on feature fusion and the improved stacking ensemble model
收藏 引用
JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES 2025年 第1期21卷 1-15页
作者: Zhang, Jiahao Xu, Zijiong Xiong, Zhi Cai, Lingru Shantou Univ Dept Comp Sci & Technol Shantou 515063 Peoples R China
The widespread adoption of the android system has sharply increased malicious android applications, posing multifaceted threats to users. Given the problems of the single feature category and high computational overhe... 详细信息
来源: 评论
AppPoet: Large language model based android malware detection via multi-view prompt engineering
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 262卷
作者: Zhao, Wenxiang Wu, Juntao Meng, Zhaoyi Univ Sci & Technol China Sch Management Hefei Peoples R China Anhui Univ Sch Comp Sci & Technol Hefei Peoples R China
Due to the vast array of android applications, their multifarious functions and intricate behavioral semantics, attackers can adopt various tactics to conceal their genuine attack intentions within legitimate function... 详细信息
来源: 评论
FEdroid: a lightweight and interpretable machine learning-based android malware detection system
收藏 引用
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS 2025年 第4期28卷 1-21页
作者: Huang, Hong Huang, Weitao Zhou, Yinghang Luo, Wengang Wang, Yunfei Sichuan Univ Sci & Engn Sch Comp Sci & Engn Yibin 644000 Sichuan Peoples R China
android operating system, renowned for its open-source nature and flexibility, holds the largest global market share, yet faces significant security challenges, particularly from malware threats. Existing studies ofte... 详细信息
来源: 评论
A Deep Learning-Based Ensemble Framework for Robust android malware detection
收藏 引用
IEEE ACCESS 2025年 13卷 46673-46696页
作者: Nethala, Sainag Chopra, Pronoy Kamaluddin, Khaja Alam, Shahid Alharbi, Soltan Alsaffar, Mohammad Splunk Inc San Francisco CA 95128 USA Amazon Irvine CA 92612 USA Aonsoft Int Inc Rolling Meadows IL 60008 USA Univ Hail Coll Comp Sci & Engn Hail 55473 Saudi Arabia Univ Jeddah Coll Engn Jeddah 23890 Saudi Arabia
The exponential growth of android applications has resulted in a surge of malware threats, posing severe risks to user privacy and data security. To address these challenges, this study introduces a novel malware dete... 详细信息
来源: 评论
LDCDroid: Learning data drift characteristics for handling the model aging problem in android malware detection
收藏 引用
COMPUTERS & SECURITY 2025年 150卷
作者: Liu, Zhen Wang, Ruoyu Peng, Bitao Qiu, Lingyu Gan, Qingqing Wang, Changji Zhang, Wenbin Guangdong Univ Foreign Studies Sch Informat Sci & Technol Guangzhou 510006 Peoples R China South China Univ Technol Informat & Network Engn Res Ctr Guangzhou 510041 Peoples R China Guangdong Engn Res Ctr Data Secur Governance & Pri Guangzhou Peoples R China Guangdong Prov Key Lab Multimodal Big Data Intelli Guangzhou 510041 Peoples R China Florida Int Univ Knight Fdn Sch Comp & Informat Sci Miami FL 11200 USA
The dynamic and evolving nature of malware applications can lead to deteriorating performance in malware detection models, a phenomenon known as the model aging problem. This issue compromises the model's effectiv... 详细信息
来源: 评论
GBADroid: an android malware detection method based on multi-view feature fusion
收藏 引用
JOURNAL OF SUPERCOMPUTING 2025年 第3期81卷 1-32页
作者: Meng, Yi Luktarhan, Nurbol Yang, Xiaotong Zhao, Guodong Xinjiang Univ Sch Comp Sci & Technol Urumqi 830046 Xinjiang Peoples R China Xinjiang Univ Sch Software Urumqi 830091 Xinjiang Peoples R China
With the development of mobile internet, the open android operating system has become the most widely used mobile platform globally, leading to a surge in malware that poses serious threats to user device security. Cu... 详细信息
来源: 评论
PermGuard: A Scalable Framework for android malware detection Using Permission-to-Exploitation Mapping
收藏 引用
IEEE ACCESS 2025年 13卷 507-528页
作者: Prasad, Arvind Chandra, Shalini Uddin, Mueen Al-Shehari, Taher Alsadhan, Nasser A. Ullah, Syed Sajid GLA Univ Dept Comp Engn & Applicat Mathura 281406 India BBA Univ Dept Comp Sci Lucknow 226025 India Univ Doha Sci & Technol Coll Comp & Informat Technol Doha Qatar King Saud Univ Dept Self Dev Skill Comp Skills Common First Year Deanship Riyadh 11451 Saudi Arabia King Saud Univ Coll Comp & Informat Sci Comp Sci Dept Riyadh 11451 Saudi Arabia Univ Agder Dept Informat & Commun Technol N-4879 Grimstad Norway
android, the world's most widely used mobile operating system, is increasingly targeted by malware due to its open-source nature, high customizability, and integration with Google services. The increasing reliance... 详细信息
来源: 评论
Level Up with ML Vulnerability Identification: Leveraging Domain Constraints in Feature Space for Robust android malware detection
收藏 引用
ACM TRANSACTIONS ON PRIVACY AND SECURITY 2025年 第2期28卷 1-32页
作者: Bostani, Hamid Zhao, Zhengyu Liu, Zhuoran Moonsamy, Veelasha Radboud Univ Nijmegen Inst Comp & Informat Sci Digital Secur Grp Nijmegen Gelderland Netherlands Xiao Jiaotong Univ Fac Elect & Informat Engn Xian Shaanxi Peoples R China Ruhr Univ Bochum Horst Gortz Inst IT Secur Bochum Nordrhein Westf Germany
Machine Learning (ML) promises to enhance the efficacy of android malware detection (AMD);however, ML models are vulnerable to realistic evasion attacks-crafting realizable Adversarial Examples (AEs) that satisfy Andr... 详细信息
来源: 评论
GNSTAM: Integrating Graph Networks With Spatial and Temporal Signature Analysis for Enhanced android malware detection
收藏 引用
IEEE ACCESS 2025年 13卷 81326-81346页
作者: Sharma, Yogesh Kumar Tomar, Deepak Singh Pateriya, R. K. Solanki, Surendra Maulana Azad Natl Inst Technol Dept Comp Sci & Engn Bhopal 462003 Madhya Pradesh India Manipal Univ Jaipur Dept Artificial Intelligence & Machine Learning Jaipur 303007 Rajasthan India
The sophistication of android malware poses significant threats to user security and privacy. Traditional detection methods struggle with rapid malware evolution and benign application diversity, leading to high false... 详细信息
来源: 评论