咨询与建议

限定检索结果

文献类型

  • 129 篇 期刊文献
  • 87 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 218 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 207 篇 工学
    • 187 篇 计算机科学与技术...
    • 71 篇 电气工程
    • 56 篇 信息与通信工程
    • 38 篇 软件工程
    • 13 篇 控制科学与工程
    • 5 篇 网络空间安全
    • 3 篇 仪器科学与技术
    • 2 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
  • 19 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 12 篇 理学
    • 10 篇 化学
    • 3 篇 生物学
    • 2 篇 数学
  • 3 篇 农学
    • 3 篇 水产
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 218 篇 android malware ...
  • 63 篇 machine learning
  • 30 篇 deep learning
  • 29 篇 static analysis
  • 19 篇 feature extracti...
  • 17 篇 mobile security
  • 15 篇 malware
  • 11 篇 feature selectio...
  • 9 篇 graph neural net...
  • 9 篇 function call gr...
  • 7 篇 classification
  • 6 篇 ensemble learnin...
  • 5 篇 malware classifi...
  • 5 篇 adversarial mach...
  • 5 篇 semantics
  • 5 篇 smart phones
  • 5 篇 codes
  • 5 篇 security
  • 5 篇 artificial intel...
  • 5 篇 concept drift

机构

  • 5 篇 chinese acad sci...
  • 5 篇 univ chinese aca...
  • 4 篇 univ elect sci &...
  • 3 篇 univ sci & techn...
  • 3 篇 beijing univ tec...
  • 3 篇 harbin inst tech...
  • 3 篇 sichuan univ sch...
  • 3 篇 southwest univ s...
  • 3 篇 beijing univ pos...
  • 3 篇 west virginia un...
  • 2 篇 shandong prov ke...
  • 2 篇 hong kong polyte...
  • 2 篇 cheikh anta diop...
  • 2 篇 natl taiwan univ...
  • 2 篇 tsinghua univ de...
  • 2 篇 shandong univ pe...
  • 2 篇 fujian normal un...
  • 2 篇 univ basque coun...
  • 2 篇 univ basque coun...
  • 2 篇 xinjiang univ sc...

作者

  • 5 篇 ye yanfang
  • 5 篇 hou shifu
  • 4 篇 yuan wei
  • 4 篇 ouya samuel
  • 4 篇 zhu dali
  • 4 篇 vinod p.
  • 4 篇 zhang yiming
  • 3 篇 xue jingfeng
  • 3 篇 nazir ahsan
  • 3 篇 wajahat ahsan
  • 3 篇 wang ruoyu
  • 3 篇 chen zhenxiang
  • 3 篇 moonsamy veelash...
  • 3 篇 ge xiuting
  • 3 篇 mahmood tariq
  • 3 篇 li heng
  • 3 篇 conti mauro
  • 3 篇 luo xiapu
  • 3 篇 sezer sakir
  • 3 篇 bostani hamid

语言

  • 216 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"主题词=Android malware detection"
218 条 记 录,以下是131-140 订阅
排序:
Securing android IoT devices with GuardDroid transparent and lightweight malware detection
收藏 引用
AIN SHAMS ENGINEERING JOURNAL 2024年 第5期15卷
作者: Wajahat, Ahsan He, Jingsha Zhu, Nafei Mahmood, Tariq Nazir, Ahsan Ullah, Faheem Qureshi, Sirajuddin Dev, Soumyabrata Beijing Univ Technol Fac Informat Technol Beijing 100124 Peoples R China Lasbela Univ Agr Water & Marine Sci Dept Comp Sci Lasbela 80700 Pakistan CCIS Prince Sultan Univ Artificial Intelligence & Data Analyt AIDA Lab Riyadh 11586 Saudi Arabia Univ Educ Fac Informat Sci Vehari Campus Vehari 61100 Pakistan Univ Coll Dublin Sch Comp Sci Dublin D04 V1W8 Ireland
The Internet of Things (IoT) has experienced significant growth in recent years and has emerged as a very dynamic sector in the worldwide market. Being an open -source platform with a substantial user base, android ha... 详细信息
来源: 评论
Analysis of Bayesian classification-based approaches for android malware detection
收藏 引用
IET INFORMATION SECURITY 2014年 第1期8卷 25-36页
作者: Yerima, Suleiman Y. Sezer, Sakir McWilliams, Gavin Queens Univ Belfast CSIT Belfast Antrim North Ireland
Mobile malware has been growing in scale and complexity spurred by the unabated uptake of smartphones worldwide. android is fast becoming the most popular mobile platform resulting in sharp increase in malware targeti... 详细信息
来源: 评论
ANALYSIS OF FEATURES SELECTION AND MACHINE LEARNING CLASSIFIER IN android malware detection
ANALYSIS OF FEATURES SELECTION AND MACHINE LEARNING CLASSIFI...
收藏 引用
5th International Conference on Information Science and Applications (ICISA)
作者: Mas'ud, Mohd Zaki Sahib, Shahrin Abdollah, Mohd Faizal Selamat, Siti Rahayu Yusof, Robiah Univ Teknikal Malaysia Melaka Fac Informat Technol & Commun Durian Tunggal 76100 Melaka Malaysia
The proliferation of android-based mobile devices and mobile applications in the market has triggered the malware author to make the mobile devices as the next profitable target. With user are now able to use mobile d... 详细信息
来源: 评论
Mining API Calls and Permissions for android malware detection  13
Mining API Calls and Permissions for Android Malware Detecti...
收藏 引用
13th International Conference on Cryptology and Network Security (CANS)
作者: Sharma, Akanksha Dash, Subrat Kumar LNM Inst Informat Technol Dept Comp Sci & Engn Jaipur Rajasthan India
The popularity of android platform is increasing very sharply due to the large market share of android and openness in nature. The increased popularity is making android an enticing target for malwares. A worrying tre... 详细信息
来源: 评论
android HIV: A Study of Repackaging malware for Evading Machine-Learning detection
收藏 引用
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2020年 15卷 987-1001页
作者: Chen, Xiao Li, Chaoran Wang, Derui Wen, Sheng Zhang, Jun Nepal, Surya Xiang, Yang Ren, Kui Swinburne Univ Technol Fac Sci Engn & Technol Hawthorn Vic 3122 Australia CSIRO Data61 Epping NSW 1710 Australia Univ Buffalo State Univ New York Dept Comp Sci & Engn Buffalo NY 14260 USA
Machine learning-based solutions have been successfully employed for the automatic detection of malware on android. However, machine learning models lack robustness to adversarial examples, which are crafted by adding... 详细信息
来源: 评论
Sensitivity Analysis of Static Features for android malware detection  22
Sensitivity Analysis of Static Features for Android Malware ...
收藏 引用
22nd Iranian Conference on Electrical Engineering (ICEE)
作者: Moghaddam, Samaneh Hosseini Abbaspour, Maghsood Shahid Beheshti Univ Fac Elect & Comp Engn Dept Comp Engn Network Secur LabGC Tehran Iran
The recent explosion of the number of mobile malware in the wild, significantly increases the importance of developing techniques to detect them. There are many published research in this area which employed tradition... 详细信息
来源: 评论
BotDroid: Permission-Based android Botnet detection Using Neural Networks  1
收藏 引用
24th International Conference on Engineering Applications of Neural Networks (EANN)
作者: Seraj, Saeed Pimenidis, Elias Pavlidis, Michalis Kapetanakis, Stelios Trovati, Marcello Polatidis, Nikolaos Univ Brighton Sch Architecture Technol & Engn Brighton BN2 4GJ E Sussex England Univ West England Dept Comp Sci & Creat Technol Bristol BS16 1QY Avon England Distributed Analyt Solut 17 Fawe St London 14 6FD England Edge Hill Univ Dept Comp Sci Ormskirk L39 4QP England
android devices can now offer a wide range of services. They support a variety of applications, including those for banking, business, health, and entertainment. The popularity and functionality of android devices, al... 详细信息
来源: 评论
Deep Convolution Neural Networks for Image-Based android malware Classification
收藏 引用
Computers, Materials & Continua 2025年 第3期82卷 4093-4116页
作者: Amel Ksibi Mohammed Zakariah Latifah Almuqren Ala Saleh Alluhaidan Department of Information Systems College of Computer and Information SciencesPrincess Nourah bint Abdulrahman UniversityRiyadh11671Saudi Arabia College of Computer and Information Sciences King Saud UniversityRiyadhP.O.Box 11442Saudi Arabia
The analysis of android malware shows that this threat is constantly increasing and is a real threat to mobile devices since traditional approaches,such as signature-based detection,are no longer effective due to the ... 详细信息
来源: 评论
Hybrid Multilevel detection of Mobile Devices malware Under Concept Drift
收藏 引用
JOURNAL OF NETWORK AND SYSTEMS MANAGEMENT 2025年 第2期33卷 1-32页
作者: Augello, Andrea De Paola, Alessandra Lo Re, Giuseppe Univ Palermo Dept Engn Palermo Italy
malwares are a major threat to the security of mobile devices, and Machine Learning (ML) is a widespread approach to automatically detect them. However, running ML analysis pipelines can be excessively burdensome for ... 详细信息
来源: 评论
Gupacker: Generalized Unpacking Framework for android malware
收藏 引用
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2025年 20卷 4338-4352页
作者: Zheng, Tao Hou, Qiyu Chen, Xingshu Ren, Hao Li, Meng Li, Hongwei Shen, Changxiang Sichuan Univ Sch Cyber Sci & Engn Chengdu 610065 Peoples R China Sichuan Univ Cyber Sci Res Inst Sch Cyber Sci & Engn Chengdu 610065 Peoples R China Sichuan Univ Key Lab Data Protect & Intelligent Management Minist Educ Chengdu 610065 Peoples R China Hefei Univ Technol Key Lab Knowledge Engn Big Data Sch Comp Sci & Informat Engn Minist Educ Hefei 230002 Peoples R China Hefei Univ Technol Intelligent Interconnected Syst Lab Anhui Prov Hefei 230002 Peoples R China Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu 611731 Peoples R China Sichuan Univ Cyber Sci Res Inst Chengdu 610065 Peoples R China
android malware authors often use packers to evade analysis. Although many unpacking tools have been proposed, they face two significant challenges: 1) They are easily impeded by anti-analysis techniques employed by p... 详细信息
来源: 评论