咨询与建议

限定检索结果

文献类型

  • 128 篇 期刊文献
  • 86 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 216 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 206 篇 工学
    • 186 篇 计算机科学与技术...
    • 70 篇 电气工程
    • 55 篇 信息与通信工程
    • 38 篇 软件工程
    • 13 篇 控制科学与工程
    • 5 篇 网络空间安全
    • 3 篇 仪器科学与技术
    • 2 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
  • 19 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 12 篇 理学
    • 10 篇 化学
    • 3 篇 生物学
    • 2 篇 数学
  • 3 篇 农学
    • 3 篇 水产
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 216 篇 android malware ...
  • 62 篇 machine learning
  • 30 篇 deep learning
  • 29 篇 static analysis
  • 19 篇 feature extracti...
  • 17 篇 mobile security
  • 15 篇 malware
  • 11 篇 feature selectio...
  • 9 篇 graph neural net...
  • 9 篇 function call gr...
  • 7 篇 classification
  • 6 篇 ensemble learnin...
  • 5 篇 malware classifi...
  • 5 篇 adversarial mach...
  • 5 篇 semantics
  • 5 篇 smart phones
  • 5 篇 codes
  • 5 篇 security
  • 5 篇 artificial intel...
  • 5 篇 training

机构

  • 5 篇 chinese acad sci...
  • 5 篇 univ chinese aca...
  • 4 篇 univ elect sci &...
  • 3 篇 univ sci & techn...
  • 3 篇 beijing univ tec...
  • 3 篇 harbin inst tech...
  • 3 篇 sichuan univ sch...
  • 3 篇 southwest univ s...
  • 3 篇 beijing univ pos...
  • 3 篇 west virginia un...
  • 2 篇 shandong prov ke...
  • 2 篇 hong kong polyte...
  • 2 篇 cheikh anta diop...
  • 2 篇 natl taiwan univ...
  • 2 篇 tsinghua univ de...
  • 2 篇 shandong univ pe...
  • 2 篇 fujian normal un...
  • 2 篇 univ basque coun...
  • 2 篇 univ basque coun...
  • 2 篇 xinjiang univ sc...

作者

  • 5 篇 ye yanfang
  • 5 篇 hou shifu
  • 4 篇 yuan wei
  • 4 篇 ouya samuel
  • 4 篇 zhu dali
  • 4 篇 vinod p.
  • 4 篇 zhang yiming
  • 3 篇 xue jingfeng
  • 3 篇 nazir ahsan
  • 3 篇 wajahat ahsan
  • 3 篇 wang ruoyu
  • 3 篇 chen zhenxiang
  • 3 篇 moonsamy veelash...
  • 3 篇 ge xiuting
  • 3 篇 mahmood tariq
  • 3 篇 li heng
  • 3 篇 conti mauro
  • 3 篇 luo xiapu
  • 3 篇 sezer sakir
  • 3 篇 bostani hamid

语言

  • 215 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"主题词=Android malware detection"
216 条 记 录,以下是11-20 订阅
排序:
android malware detection: Feature Update Using Incremental Learning Approach: Further Investigation of UFILA  25
Android Malware Detection: Feature Update Using Incremental ...
收藏 引用
25th International Conference on Advanced Communication Technology (ICACT) - New Cyber Security Risks for Enterprise Amidst COVID-19 Pandemic
作者: Degrees, Zakaria Sawadogo Dembele, Jean-Marie Degrees, Gervais Mendy Ouya, Samuel Cheikh Anta Diop Univ LITA Lab Comp Sci Telecommun & Applicat Dakar Senegal Gaston Berger Univ LANI Lab Numer Anal & Comp Sci Dakar Senegal
Several kinds of mobile applications are available on platforms offering various services to users. Both malware and good applications are found in software repositories, which is a major cybersecurity problem. To add... 详细信息
来源: 评论
android malware detection: An in-depth investigation of the impact of the use of imbalance datasets on the efficiency of machine learning models  25
Android malware detection: An in-depth investigation of the ...
收藏 引用
25th International Conference on Advanced Communication Technology (ICACT) - New Cyber Security Risks for Enterprise Amidst COVID-19 Pandemic
作者: Degrees, Zakaria Sawadogo Dembele, Jean-Marie Degrees, Gervais Mendy Ouya, Samuel Cheikh Anta Diop Univ LITA Lab Comp Sci Telecommun & Applicat Dakar Senegal Gaston Berger Univ LANI Lab Numer Anal & Comp Sci Dakar Senegal Gaston Berger Univ Dakar Senegal Univ Cheikh Anta Diop ESP Polytechn Sch Dakar Senegal Gaston Berger Univ Comp Sci Dakar Senegal
Machine learning techniques have become an essential part of research into the detection and classification of malicious applications. There are several approaches or algorithms that learn from existing data and predi... 详细信息
来源: 评论
LDCDroid: Learning data drift characteristics for handling the model aging problem in android malware detection
收藏 引用
COMPUTERS & SECURITY 2025年 150卷
作者: Liu, Zhen Wang, Ruoyu Peng, Bitao Qiu, Lingyu Gan, Qingqing Wang, Changji Zhang, Wenbin Guangdong Univ Foreign Studies Sch Informat Sci & Technol Guangzhou 510006 Peoples R China South China Univ Technol Informat & Network Engn Res Ctr Guangzhou 510041 Peoples R China Guangdong Engn Res Ctr Data Secur Governance & Pri Guangzhou Peoples R China Guangdong Prov Key Lab Multimodal Big Data Intelli Guangzhou 510041 Peoples R China Florida Int Univ Knight Fdn Sch Comp & Informat Sci Miami FL 11200 USA
The dynamic and evolving nature of malware applications can lead to deteriorating performance in malware detection models, a phenomenon known as the model aging problem. This issue compromises the model's effectiv... 详细信息
来源: 评论
GBADroid: an android malware detection method based on multi-view feature fusion
收藏 引用
JOURNAL OF SUPERCOMPUTING 2025年 第3期81卷 1-32页
作者: Meng, Yi Luktarhan, Nurbol Yang, Xiaotong Zhao, Guodong Xinjiang Univ Sch Comp Sci & Technol Urumqi 830046 Xinjiang Peoples R China Xinjiang Univ Sch Software Urumqi 830091 Xinjiang Peoples R China
With the development of mobile internet, the open android operating system has become the most widely used mobile platform globally, leading to a surge in malware that poses serious threats to user device security. Cu... 详细信息
来源: 评论
Meta-SonifiedDroid: Metaheuristics for Optimizing Sonified android malware detection
收藏 引用
IEEE ACCESS 2024年 12卷 134779-134808页
作者: Tarwireyi, Paul Terzoli, Alfredo Adigun, Matthew O. Univ Zululand Dept Comp Sci ZA-3886 Kwa Dlangezwa South Africa
To mitigate the rising threat of android malware, researchers have been actively looking for mechanisms that will enable rapid and accurate malware detection. Recently, attention has been paid to the use of audio-base... 详细信息
来源: 评论
Sensitive Behavioral Chain-Focused android malware detection Fused With AST Semantics
收藏 引用
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2024年 19卷 9216-9229页
作者: Gong, Jiacheng Niu, Weina Li, Song Zhang, Mingxue Zhang, Xiaosong Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu 611731 Peoples R China Univ Elect Sci & Technol China Inst Adv Study Shenzhen 518110 Peoples R China Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu 611731 Peoples R China Zhejiang Univ State Key Lab Blockchain & Data Secur Hangzhou 310058 Peoples R China
The proliferation of android malware poses a substantial security threat to mobile devices. Thus, achieving efficient and accurate malware detection and malware family identification is crucial for safeguarding users&... 详细信息
来源: 评论
GSEDroid: GNN-based android malware detection framework using lightweight semantic embedding
收藏 引用
COMPUTERS & SECURITY 2024年 140卷
作者: Gu, Jintao Zhu, Hongliang Han, Zewei Li, Xiangyu Zhao, Jianjin Beijing Univ Posts & Telecommun Sch Cyberspace Secur Beijing Peoples R China
Currently, the prevalence of android malware remains substantial. Malicious programs increasingly use advanced obfuscation techniques, posing challenges for security professionals with enhanced disguises, a proliferat... 详细信息
来源: 评论
SNDGCN: Robust android malware detection based on subgraph network and denoising GCN network
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2024年 250卷
作者: Lu, Xiaofeng Zhao, Jinglun Zhu, Senhao Lio, Pietro Beijing Univ Post & Telecommun Natl Engn Ctr Mobile Internet Secur Technol Beijing Peoples R China Beijing Univ Post & Telecommun Sch Cyberspace Secur Beijing Peoples R China Univ Cambridge Comp Lab Cambridge CB3 0FD Cambs England
android malware seriously affects the use of android applications, and a growing number of android malware developers are using adversarial attacks to evade detection by deep learning models. This work proposes an And... 详细信息
来源: 评论
PermGuard: A Scalable Framework for android malware detection Using Permission-to-Exploitation Mapping
收藏 引用
IEEE ACCESS 2025年 13卷 507-528页
作者: Prasad, Arvind Chandra, Shalini Uddin, Mueen Al-Shehari, Taher Alsadhan, Nasser A. Ullah, Syed Sajid GLA Univ Dept Comp Engn & Applicat Mathura 281406 India BBA Univ Dept Comp Sci Lucknow 226025 India Univ Doha Sci & Technol Coll Comp & Informat Technol Doha Qatar King Saud Univ Dept Self Dev Skill Comp Skills Common First Year Deanship Riyadh 11451 Saudi Arabia King Saud Univ Coll Comp & Informat Sci Comp Sci Dept Riyadh 11451 Saudi Arabia Univ Agder Dept Informat & Commun Technol N-4879 Grimstad Norway
android, the world's most widely used mobile operating system, is increasingly targeted by malware due to its open-source nature, high customizability, and integration with Google services. The increasing reliance... 详细信息
来源: 评论
Level Up with ML Vulnerability Identification: Leveraging Domain Constraints in Feature Space for Robust android malware detection
收藏 引用
ACM TRANSACTIONS ON PRIVACY AND SECURITY 2025年 第2期28卷 1-32页
作者: Bostani, Hamid Zhao, Zhengyu Liu, Zhuoran Moonsamy, Veelasha Radboud Univ Nijmegen Inst Comp & Informat Sci Digital Secur Grp Nijmegen Gelderland Netherlands Xiao Jiaotong Univ Fac Elect & Informat Engn Xian Shaanxi Peoples R China Ruhr Univ Bochum Horst Gortz Inst IT Secur Bochum Nordrhein Westf Germany
Machine Learning (ML) promises to enhance the efficacy of android malware detection (AMD);however, ML models are vulnerable to realistic evasion attacks-crafting realizable Adversarial Examples (AEs) that satisfy Andr... 详细信息
来源: 评论