咨询与建议

限定检索结果

文献类型

  • 128 篇 期刊文献
  • 86 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 216 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 206 篇 工学
    • 186 篇 计算机科学与技术...
    • 70 篇 电气工程
    • 55 篇 信息与通信工程
    • 38 篇 软件工程
    • 13 篇 控制科学与工程
    • 5 篇 网络空间安全
    • 3 篇 仪器科学与技术
    • 2 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
  • 19 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 12 篇 理学
    • 10 篇 化学
    • 3 篇 生物学
    • 2 篇 数学
  • 3 篇 农学
    • 3 篇 水产
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 216 篇 android malware ...
  • 62 篇 machine learning
  • 30 篇 deep learning
  • 29 篇 static analysis
  • 19 篇 feature extracti...
  • 17 篇 mobile security
  • 15 篇 malware
  • 11 篇 feature selectio...
  • 9 篇 graph neural net...
  • 9 篇 function call gr...
  • 7 篇 classification
  • 6 篇 ensemble learnin...
  • 5 篇 malware classifi...
  • 5 篇 adversarial mach...
  • 5 篇 semantics
  • 5 篇 smart phones
  • 5 篇 codes
  • 5 篇 security
  • 5 篇 artificial intel...
  • 5 篇 training

机构

  • 5 篇 chinese acad sci...
  • 5 篇 univ chinese aca...
  • 4 篇 univ elect sci &...
  • 3 篇 univ sci & techn...
  • 3 篇 beijing univ tec...
  • 3 篇 harbin inst tech...
  • 3 篇 sichuan univ sch...
  • 3 篇 southwest univ s...
  • 3 篇 beijing univ pos...
  • 3 篇 west virginia un...
  • 2 篇 shandong prov ke...
  • 2 篇 hong kong polyte...
  • 2 篇 cheikh anta diop...
  • 2 篇 natl taiwan univ...
  • 2 篇 tsinghua univ de...
  • 2 篇 shandong univ pe...
  • 2 篇 fujian normal un...
  • 2 篇 univ basque coun...
  • 2 篇 univ basque coun...
  • 2 篇 xinjiang univ sc...

作者

  • 5 篇 ye yanfang
  • 5 篇 hou shifu
  • 4 篇 yuan wei
  • 4 篇 ouya samuel
  • 4 篇 zhu dali
  • 4 篇 vinod p.
  • 4 篇 zhang yiming
  • 3 篇 xue jingfeng
  • 3 篇 nazir ahsan
  • 3 篇 wajahat ahsan
  • 3 篇 wang ruoyu
  • 3 篇 chen zhenxiang
  • 3 篇 moonsamy veelash...
  • 3 篇 ge xiuting
  • 3 篇 mahmood tariq
  • 3 篇 li heng
  • 3 篇 conti mauro
  • 3 篇 luo xiapu
  • 3 篇 sezer sakir
  • 3 篇 bostani hamid

语言

  • 215 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"主题词=Android malware detection"
216 条 记 录,以下是41-50 订阅
排序:
A Deep Dive Inside DREBIN: An Explorative Analysis beyond android malware detection Scores
收藏 引用
ACM TRANSACTIONS ON PRIVACY AND SECURITY 2022年 第2期25卷 1–28页
作者: Daoudi, Nadia Allix, Kevin Bissyande, Tegawende Francois Klein, Jacques Univ Luxembourg SnT 29 Ave JF Kennedy L-1359 Luxembourg Luxembourg
Machine learning advances have been extensively explored for implementing large-scale malware detection. When reported in the literature, performance evaluation of machine learning based detectors generally focuses on... 详细信息
来源: 评论
SDAC: A Slow-Aging Solution for android malware detection Using Semantic Distance Based API Clustering
收藏 引用
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2022年 第2期19卷 1149-1163页
作者: Xu, Jiayun Li, Yingjiu Deng, Robert H. Xu, Ke Singapore Management Univ Sch Informat Syst Singapore 188065 Singapore
A novel slow-aging solution named SDAC is proposed to address the model aging problem in android malware detection, which is due to the lack of adapting to the changes in android specifications during malware detectio... 详细信息
来源: 评论
Defensive Randomization Against Adversarial Attacks in Image-based android malware detection
Defensive Randomization Against Adversarial Attacks in Image...
收藏 引用
IEEE International Conference on Communications (IEEE ICC)
作者: Lan, Tianwei Darwaish, Asim Nait-Abdesselam, Farid Gu, Pengwenlong Univ Paris Cite Paris France Univ Missouri Kansas City MO 64110 USA Inst Polytech Paris Telecom Paris LTCI Paris France
The extensive popularity of android operating system hones the increased malware attacks and threatens the android ecosystem. Machine learning is one of the versatile tools to detect legacy and new malware with high a... 详细信息
来源: 评论
android malware detection as a Bi-level problem
收藏 引用
COMPUTERS & SECURITY 2022年 121卷
作者: Jerbi, Manel Dagdia, Zaineb Chelly Bechikh, Slim Ben Said, Lamjed Univ Tunis SMART Lab ISG Campus Tunis Tunisia Univ Paris Saclay UVSQ DAVID Gif Sur Yvette France Inst Super Gest Tunis LARODEC Tunis Tunisia
malware detection is still a very challenging topic in the cybersecurity field. This is mainly due to the use of obfuscation techniques. To solve this issue, researchers proposed to extract frequent API (Application P... 详细信息
来源: 评论
SeGDroid: An android malware detection method based on sensitive function call graph learning
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2024年 235卷
作者: Liu, Zhen Wang, Ruoyu Japkowicz, Nathalie Gomes, Heitor Murilo Peng, Bitao Zhang, Wenbin Guangdong Univ Foreign Studies Sch Informat Sci & Technol Sch Cyber Secur Guangzhou 510006 Peoples R China South China Univ Technol Informat Network Engn & Res Ctr Guangzhou 510641 Peoples R China Amer Univ Dept Comp Sci Washington DC 20016 USA Victoria Univ Wellington Sch Engn & Comp Sci Wellington 6140 New Zealand Michigan Technol Univ Dept Comp Sci Houghton MI 49931 USA
malware is still a challenging security problem in the android ecosystem, as malware is often obfuscated to evade detection. In such case, semantic behavior feature extraction is crucial for training a robust malware ... 详细信息
来源: 评论
Effectiveness of Video-Classification in android malware detection Through API-Streams and CNN-LSTM Autoencoders  5th
Effectiveness of Video-Classification in Android Malware Det...
收藏 引用
5th International Symposium on Mobile Internet Security (MobiSec)
作者: D'Angelo, Gianni Palmieri, Francesco Robustelli, Antonio Univ Salerno Dept Comp Sci Fisciano Italy
The outbreak of the COVID-19 pandemic has forced worldwide employees to massive use of their mobile devices to access corporate systems. This new scenario has made mobile devices more susceptible to malicious applicat... 详细信息
来源: 评论
An Analysis on Different Distance Measures in KNN with PCA for android malware detection  22
An Analysis on Different Distance Measures in KNN with PCA f...
收藏 引用
22nd International Conference on Advances in ICT for Emerging Regions (ICTer)
作者: Dissanayake, Sayuru Gunathunga, Sankha Jayanetti, Dimalka Perera, Kavindu Liyanapathirana, Chethana Rupasinghe, Lakmal Sri Lanka Inst Informat Technol Fac Comp Malabe Sri Lanka
As Majority of the market is presently occupied by android consumers, android operating system is a prominent target for intruders. This research shows a dynamic android malware detection approach that classifies dang... 详细信息
来源: 评论
MalWhiteout: Reducing Label Errors in android malware detection  7
MalWhiteout: Reducing Label Errors in Android Malware Detect...
收藏 引用
37th IEEE/ACM International Conference on Automated Software Engineering (ASE)
作者: Wang, Liu Wang, Haoyu Luo, Xiapu Sui, Yulei Huazhong Univ Sci & Technol Sch Cyber Sci & Engn Wuhan Peoples R China Hong Kong Polytechn Univ Hong Kong Peoples R China Univ Technol Sydney Sydney NSW Australia
Machine learning based android malware detection has attracted a great deal of research work in recent years. A reliable malware dataset is critical to evaluate the effectiveness of malware detection approaches. Unfor... 详细信息
来源: 评论
Towards Multi-view android malware detection Through Image-based Deep Learning  18
Towards Multi-view Android Malware Detection Through Image-b...
收藏 引用
18th IEEE International Wireless Communications and Mobile Computing Conference (IWCMC)
作者: Geremias, Jhonatan Viegas, Eduardo K. Santin, Altair O. Britto, Alceu Horchulhack, Pedro Pontificia Univ Catolica Parana PUCPR Grad Program Comp Sci PPGIa Curitiba Parana Brazil Secure Syst Res Ctr Technol Innovat Inst TII Abu Dhabi U Arab Emirates
Over the last years, several works have proposed highly accurate android malware detection techniques. Surprisingly, modern malware apps can still pave their way to official markets, thus, demanding the provision of m... 详细信息
来源: 评论
EvadeDroid: A practical evasion attack on machine learning for black-box android malware detection
收藏 引用
COMPUTERS & SECURITY 2024年 139卷
作者: Bostani, Hamid Moonsamy, Veelasha Radboud Univ Nijmegen Inst Comp & Informat Sci Digital Secur Grp Nijmegen Netherlands Ruhr Univ Bochum Horst Gortz Inst IT Secur Bochum Germany
Over the last decade, researchers have extensively explored the vulnerabilities of android malware detectors to adversarial examples through the development of evasion attacks;however, the practicality of these attack... 详细信息
来源: 评论