咨询与建议

限定检索结果

文献类型

  • 129 篇 期刊文献
  • 86 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 217 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 206 篇 工学
    • 186 篇 计算机科学与技术...
    • 70 篇 电气工程
    • 55 篇 信息与通信工程
    • 38 篇 软件工程
    • 13 篇 控制科学与工程
    • 5 篇 网络空间安全
    • 3 篇 仪器科学与技术
    • 2 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
  • 19 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 12 篇 理学
    • 10 篇 化学
    • 3 篇 生物学
    • 2 篇 数学
  • 3 篇 农学
    • 3 篇 水产
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 217 篇 android malware ...
  • 63 篇 machine learning
  • 30 篇 deep learning
  • 29 篇 static analysis
  • 19 篇 feature extracti...
  • 17 篇 mobile security
  • 15 篇 malware
  • 11 篇 feature selectio...
  • 9 篇 graph neural net...
  • 9 篇 function call gr...
  • 7 篇 classification
  • 6 篇 ensemble learnin...
  • 5 篇 malware classifi...
  • 5 篇 adversarial mach...
  • 5 篇 semantics
  • 5 篇 smart phones
  • 5 篇 codes
  • 5 篇 security
  • 5 篇 artificial intel...
  • 5 篇 training

机构

  • 5 篇 chinese acad sci...
  • 5 篇 univ chinese aca...
  • 4 篇 univ elect sci &...
  • 3 篇 univ sci & techn...
  • 3 篇 beijing univ tec...
  • 3 篇 harbin inst tech...
  • 3 篇 sichuan univ sch...
  • 3 篇 southwest univ s...
  • 3 篇 beijing univ pos...
  • 3 篇 west virginia un...
  • 2 篇 shandong prov ke...
  • 2 篇 hong kong polyte...
  • 2 篇 cheikh anta diop...
  • 2 篇 natl taiwan univ...
  • 2 篇 tsinghua univ de...
  • 2 篇 shandong univ pe...
  • 2 篇 fujian normal un...
  • 2 篇 univ basque coun...
  • 2 篇 univ basque coun...
  • 2 篇 xinjiang univ sc...

作者

  • 5 篇 ye yanfang
  • 5 篇 hou shifu
  • 4 篇 yuan wei
  • 4 篇 ouya samuel
  • 4 篇 zhu dali
  • 4 篇 vinod p.
  • 4 篇 zhang yiming
  • 3 篇 xue jingfeng
  • 3 篇 nazir ahsan
  • 3 篇 wajahat ahsan
  • 3 篇 wang ruoyu
  • 3 篇 chen zhenxiang
  • 3 篇 moonsamy veelash...
  • 3 篇 ge xiuting
  • 3 篇 mahmood tariq
  • 3 篇 li heng
  • 3 篇 conti mauro
  • 3 篇 luo xiapu
  • 3 篇 sezer sakir
  • 3 篇 bostani hamid

语言

  • 216 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"主题词=Android malware detection"
217 条 记 录,以下是71-80 订阅
排序:
An android malware detection and Classification Approach Based on Contrastive Lerning
收藏 引用
COMPUTERS & SECURITY 2022年 123卷
作者: Yang, Shaojie Wang, Yongjun Xu, Haoran Xu, Fangliang Chen, Mantun Natl Univ Def Technol Coll Comp Changsha Peoples R China
android malware detection is a serious issue for mobile security. Recent machine learning-based research could achieve high accuracy. However, there are far more unlabeled samples in the application scenario, while mo... 详细信息
来源: 评论
DroidRadar: android malware detection Based on Global Sensitive Graph Embedding  20
DroidRadar: Android Malware Detection Based on Global Sensit...
收藏 引用
20th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (IEEE TrustCom)
作者: Song, Qige Zhang, Yongzheng Yao, Junliang Chinese Acad Sci Univ Chinese Acad Sci Sch Cyber Secur Inst Informat Engn Beijing Peoples R China
android application markets face severe threats of malware attacks. Existing learning-based malware detection approaches rely on easily obfuscated features or unscalable sophisticated graph analysis techniques. In thi... 详细信息
来源: 评论
Impact of datasets on machine learning based methods in android malware detection: an empirical study  21
Impact of datasets on machine learning based methods in Andr...
收藏 引用
21st IEEE International Conference on Software Quality, Reliability and Security (QRS)
作者: Ge, Xiuting Huang, Yifan Hui, Zhanwei Wang, Xiaojuan Cao, Xu Nanjing Univ State Key Lab Novel Software Technol Nanjing Jiangsu Peoples R China Mil Acad Sci Beijing Peoples R China Southwest Univ Sci & Technol Dept Comp Sci & Technol Mianyang Sichuan Peoples R China
For android malware detection, machine learning-based (ML-based) methods show promising performance. However, limited studies are performed to investigate the impact of factors related to datasets on ML-based methods,... 详细信息
来源: 评论
Static Analysis for android malware detection with Document Vectors  21
Static Analysis for Android Malware detection with Document ...
收藏 引用
21st IEEE International Conference on Data Mining (IEEE ICDM)
作者: Raghav, Utkarsh Martinez-Marroquin, Elisa Ma, Wanli Univ Canberra Sch IT & Syst Canberra ACT Australia
With the increase of smart mobile devices in use, the number of malware targeting the mobile platforms has been increasing. As the major market player in the industry, android OS has been the favourite target of perpe... 详细信息
来源: 评论
DroidmalwareDetector: A novel android malware detection framework based on convolutional neural network
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2022年 206卷
作者: Kabakus, Abdullah Talha Duzce Univ Fac Engn Dept Comp Engn TR-81620 Duzce Turkey Duzce Univ Fac Engn Dept Comp Engn Konuralp Campus TR-81620 Duzce Turkey
Smartphones have become an integral part of our daily lives thanks to numerous reasons. While benefitting from what they offer, it is critical to be aware of the existence of malware in the android ecosystem and be aw... 详细信息
来源: 评论
An optimized and efficient android malware detection framework for future sustainable computing
收藏 引用
SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS 2022年 54卷
作者: Smmarwar, Santosh K. Gupta, Govind P. Kumar, Sanjay Kumar, Prabhat Natl Inst Technol Raipur Dept Informat Technol Raipur 492010 Madhya Pradesh India LUT Univ Dept Software Engn LUT Sch Engn Sci Lappeenranta 53850 Finland
android-based smart devices cater to services in almost every aspect of our lives like personal, professional, social, banking, business, etc. However, people with increasingly dependent on the smartphone, malicious a... 详细信息
来源: 评论
MalWhiteout: Reducing Label Errors in android malware detection  22
MalWhiteout: Reducing Label Errors in Android Malware Detect...
收藏 引用
Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering
作者: Liu Wang Haoyu Wang Xiapu Luo Yulei Sui Huazhong University of Science and Technology China and Beijing University of Posts and Telecommunications China Huazhong University of Science and Technology China The Hong Kong Polytechnic University China University of Technology Sydney Australia
Machine learning based android malware detection has attracted a great deal of research work in recent years. A reliable malware dataset is critical to evaluate the effectiveness of malware detection approaches. Unfor... 详细信息
来源: 评论
A Systematic Literature Review of android malware detection Using Static Analysis
收藏 引用
IEEE ACCESS 2020年 8卷 116363-116379页
作者: Pan, Ya Ge, Xiuting Fang, Chunrong Fan, Yong Southwest Univ Sci & Technol Dept Comp Sci & Technol Mianyang 621000 Sichuan Peoples R China Nanjing Univ State Key Lab Novel Software Technol Nanjing 210093 Peoples R China
android malware has been in an increasing trend in recent years due to the pervasiveness of android operating system. android malware is installed and run on the smartphones without explicitly prompting the users or w... 详细信息
来源: 评论
Deep and broad URL feature mining for android malware detection
收藏 引用
INFORMATION SCIENCES 2020年 513卷 600-613页
作者: Wang, Shanshan Chen, Zhenxiang Yan, Qiben Ji, Ke Peng, Lizhi Yang, Bo Conti, Mauro Univ Jinan Shandong Prov Key Lab Network Based Intelligent C Jinan Peoples R China Michigan State Univ Dept Comp Sci & Engn E Lansing MI 48824 USA Univ Padua Dept Math Padua Italy
In recent years, the scale and diversity of malicious software on mobile networks have grown significantly, thereby causing considerable danger to users' property and personal privacy. In this study, we propose a ... 详细信息
来源: 评论
android malware detection based on system call sequences and LSTM
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2019年 第4期78卷 3979-3999页
作者: Xiao, Xi Zhang, Shaofeng Mercaldo, Francesco Hu, Guangwu Sangaiah, Arun Kumar Tsinghua Univ Grad Sch Shenzhen Shenzhen 518055 Peoples R China Natl Res Council Italy Inst Informat & Telemat I-56124 Pisa Italy Shenzhen Inst Informat Technol Sch Comp Sci Shenzhen 518172 Peoples R China VIT Univ Sch Comp Sci & Engn Vellore 632014 Tamil Nadu India
As android-based mobile devices become increasingly popular, malware detection on android is very crucial nowadays. In this paper, a novel detection method based on deep learning is proposed to distinguish malware fro... 详细信息
来源: 评论