咨询与建议

限定检索结果

文献类型

  • 747 篇 期刊文献
  • 208 篇 会议
  • 23 篇 学位论文
  • 1 册 图书

馆藏范围

  • 979 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 746 篇 工学
    • 307 篇 计算机科学与技术...
    • 271 篇 电气工程
    • 249 篇 控制科学与工程
    • 86 篇 交通运输工程
    • 50 篇 机械工程
    • 42 篇 石油与天然气工程
    • 40 篇 土木工程
    • 38 篇 软件工程
    • 31 篇 信息与通信工程
    • 26 篇 化学工程与技术
    • 25 篇 动力工程及工程热...
    • 16 篇 仪器科学与技术
    • 8 篇 环境科学与工程(可...
    • 4 篇 力学(可授工学、理...
    • 4 篇 电子科学与技术(可...
    • 4 篇 建筑学
  • 356 篇 管理学
    • 339 篇 管理科学与工程(可...
    • 52 篇 工商管理
    • 6 篇 公共管理
  • 231 篇 理学
    • 196 篇 数学
    • 65 篇 系统科学
    • 11 篇 统计学(可授理学、...
    • 9 篇 物理学
    • 7 篇 生物学
    • 4 篇 生态学
  • 79 篇 经济学
    • 55 篇 应用经济学
    • 25 篇 理论经济学
  • 18 篇 医学
    • 11 篇 基础医学(可授医学...
    • 10 篇 临床医学
    • 7 篇 公共卫生与预防医...
  • 8 篇 军事学
  • 7 篇 农学
  • 3 篇 法学

主题

  • 979 篇 approximate dyna...
  • 142 篇 reinforcement le...
  • 141 篇 optimal control
  • 83 篇 adaptive dynamic...
  • 77 篇 neural networks
  • 64 篇 adaptive critic ...
  • 62 篇 markov decision ...
  • 59 篇 dynamic programm...
  • 50 篇 markov decision ...
  • 36 篇 nonlinear system...
  • 29 篇 adaptive dynamic...
  • 22 篇 uncertainty
  • 22 篇 adaptive control
  • 21 篇 neural network
  • 21 篇 policy iteration
  • 20 篇 neuro-dynamic pr...
  • 19 篇 linear programmi...
  • 18 篇 value function a...
  • 17 篇 value iteration
  • 17 篇 optimization

机构

  • 63 篇 chinese acad sci...
  • 33 篇 univ sci & techn...
  • 18 篇 princeton univ d...
  • 12 篇 georgia inst tec...
  • 11 篇 tsinghua univ de...
  • 10 篇 school of automa...
  • 9 篇 northeastern uni...
  • 9 篇 cornell univ sch...
  • 9 篇 univ rhode isl d...
  • 8 篇 air force instit...
  • 7 篇 the state key la...
  • 7 篇 south china univ...
  • 7 篇 univ illinois de...
  • 6 篇 univ chicago boo...
  • 6 篇 tsinghua univ sc...
  • 6 篇 univ chinese aca...
  • 6 篇 chinese acad sci...
  • 6 篇 univ chinese aca...
  • 5 篇 natl univ singap...
  • 5 篇 univ illinois de...

作者

  • 65 篇 wei qinglai
  • 58 篇 liu derong
  • 29 篇 song ruizhuo
  • 22 篇 powell warren b.
  • 21 篇 wang ding
  • 16 篇 lee jay h.
  • 15 篇 ulmer marlin w.
  • 13 篇 lee jong min
  • 12 篇 lewis frank l.
  • 12 篇 zhang huaguang
  • 11 篇 li hongliang
  • 10 篇 robbins matthew ...
  • 9 篇 lygeros john
  • 9 篇 derong liu
  • 8 篇 xu xin
  • 8 篇 lunday brian j.
  • 8 篇 topaloglu huseyi...
  • 8 篇 thomas barrett w...
  • 8 篇 huang zhijian
  • 8 篇 mattfeld dirk c.

语言

  • 923 篇 英文
  • 49 篇 其他
  • 4 篇 中文
  • 2 篇 西班牙文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 俄文
检索条件"主题词=Approximate Dynamic Programming"
979 条 记 录,以下是781-790 订阅
排序:
Online routing and battery reservations for electric vehicles with swappable batteries
收藏 引用
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL 2014年 70卷 285-302页
作者: Adler, Jonathan D. Mirchandani, Pitu B. Arizona State Univ Sch Comp Informat & Decis Syst Engn Tempe AZ 85281 USA
Electric vehicles are becoming a more popular form of transportation, however their limited range has proven problematic. Battery-exchange stations allow the vehicles to swap batteries during their trip, but if a vehi... 详细信息
来源: 评论
Stable iterative adaptive dynamic programming algorithm with approximation errors for discrete-time nonlinear systems
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2014年 第6期24卷 1355-1367页
作者: Wei, Qinglai Liu, Derong Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China
In this paper, a novel iterative adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. When the iterative control law and ite... 详细信息
来源: 评论
Policy Iteration Adaptive dynamic programming Algorithm for Discrete-Time Nonlinear Systems
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2014年 第3期25卷 621-634页
作者: Liu, Derong Wei, Qinglai Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China
This paper is concerned with a new discrete-time policy iteration adaptive dynamic programming (ADP) method for solving the infinite horizon optimal control problem of nonlinear systems. The idea is to use an iterativ... 详细信息
来源: 评论
Online Synchronous approximate Optimal Learning Algorithm for Multiplayer Nonzero-Sum Games With Unknown dynamics
收藏 引用
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS 2014年 第8期44卷 1015-1027页
作者: Liu, Derong Li, Hongliang Wang, Ding Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China
In this paper, we develop an online synchronous approximate optimal learning algorithm based on policy iteration to solve a multiplayer nonzero-sum game without the requirement of exact knowledge of dynamical systems.... 详细信息
来源: 评论
Stabilization of Stochastic Iterative Methods for Singular and Nearly Singular Linear Systems
收藏 引用
MATHEMATICS OF OPERATIONS RESEARCH 2014年 第1期39卷 1-30页
作者: Wang, Mengdi Bertsekas, Dimitri P. MIT Lab Informat & Decis Syst Cambridge MA 02139 USA
We consider linear systems of equations, Ax = b, with an emphasis on the case where A is singular. Under certain conditions, necessary as well as sufficient, linear deterministic iterative methods generate sequences {... 详细信息
来源: 评论
Near Optimal Output Feedback Control of Nonlinear Discrete-time Systems Based on Reinforcement Neural Network Learning
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2014年 第4期1卷 372-384页
作者: Qiming Zhao Hao Xu Sarangapani Jagannathan the DENSO International America Inc. with the College of Science and Engineering Texas A&M University the Department of Electrical&Computer Engineering Missouri University of Science and Technology
In this paper, the output feedback based finitehorizon near optimal regulation of nonlinear affine discretetime systems with unknown system dynamics is considered by using neural networks(NNs) to approximate Hamilton-... 详细信息
来源: 评论
A Clustering-Based Graph Laplacian Framework for Value Function Approximation in Reinforcement Learning
收藏 引用
IEEE TRANSACTIONS ON CYBERNETICS 2014年 第12期44卷 2613-2625页
作者: Xu, Xin Huang, Zhenhua Graves, Daniel Pedrycz, Witold Natl Univ Def Technol Coll Mechatron & Automat Changsha 410073 Hunan Peoples R China Univ Alberta Dept Elect & Comp Engn Edmonton AB T6G 2V4 Canada King Abdulaziz Univ Fac Engn Dept Elect & Comp Engn Jeddah 21589 Saudi Arabia Polish Acad Sci Syst Res Inst PL-01447 Warsaw Poland
In order to deal with the sequential decision problems with large or continuous state spaces, feature representation and function approximation have been a major research topic in reinforcement learning (RL). In this ... 详细信息
来源: 评论
Risk aversion and adaptive management: Insights from a multi-armed bandit model of invasive species risk
收藏 引用
JOURNAL OF ENVIRONMENTAL ECONOMICS AND MANAGEMENT 2014年 第2期68卷 226-242页
作者: Springborn, Michael R. Univ Calif Davis Dept Environm Sci & Policy Davis CA 95616 USA
This article explores adaptive management (AM) for decision-making under environmental uncertainty. In the context of targeting invasive species inspections of agricultural imports, I find that risk aversion increases... 详细信息
来源: 评论
approximate Optimal Tracking Control for Continuous-Time Unknown Nonlinear Systems  33
Approximate Optimal Tracking Control for Continuous-Time Unk...
收藏 引用
33rd Chinese Control Conference (CCC)
作者: Na, Jing Lv, Yongfeng Wu, Xing Guo, Yu Chen, Qiang Kunming Univ Sci & Technol Fac Mech & Elect Engn Kunming 650500 Peoples R China Zhejiang Univ Technol Coll Informat Engn Hangzhou 310023 Zhejiang Peoples R China
This paper proposes an online adaptive approximate solution for the infinite-horizon optimal tracking control for continuous-time nonlinear systems with unknown system dynamics, which is achieved in terms of a novel i... 详细信息
来源: 评论
Optimal Learning Control for Discrete-Time Nonlinear Systems Using Generalized Policy Iteration Based Adaptive dynamic programming  11
Optimal Learning Control for Discrete-Time Nonlinear Systems...
收藏 引用
11th World Congress on Intelligent Control and Automation
作者: Wei, Qinglai Liu, Derong Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China
In this paper, a novel generalized policy iteration algorithm is investigated to solve infinite horizon optimal control problems for discrete-time nonlinear systems. Two iteration indices are introduced in the general... 详细信息
来源: 评论