咨询与建议

限定检索结果

文献类型

  • 30 篇 期刊文献
  • 2 篇 会议

馆藏范围

  • 32 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 27 篇 工学
    • 22 篇 计算机科学与技术...
    • 5 篇 电气工程
    • 4 篇 动力工程及工程热...
    • 4 篇 石油与天然气工程
    • 3 篇 信息与通信工程
    • 2 篇 核科学与技术
    • 1 篇 控制科学与工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 软件工程
    • 1 篇 网络空间安全
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
  • 2 篇 理学
    • 2 篇 物理学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...

主题

  • 32 篇 artificial elect...
  • 12 篇 optimization
  • 4 篇 meta-heuristic
  • 3 篇 metaheuristic op...
  • 2 篇 spherical geomet...
  • 2 篇 meta-heuristic a...
  • 2 篇 feature selectio...
  • 2 篇 engineering desi...
  • 1 篇 multi-objective ...
  • 1 篇 repulsion strate...
  • 1 篇 pr&#252
  • 1 篇 white blood cell...
  • 1 篇 benchmark functi...
  • 1 篇 tuning
  • 1 篇 economic load di...
  • 1 篇 spherical multip...
  • 1 篇 repulsion mechan...
  • 1 篇 incomplete beta ...
  • 1 篇 mixed dataset
  • 1 篇 chaotic local se...

机构

  • 5 篇 dr br ambedkar n...
  • 5 篇 guilin univ tech...
  • 4 篇 guilin univ tech...
  • 2 篇 guangxi univ nat...
  • 2 篇 suez canal univ ...
  • 2 篇 guangxi high sch...
  • 2 篇 jadavpur univ de...
  • 2 篇 guangxi key labs...
  • 2 篇 dr br ambedkar n...
  • 2 篇 natl inst techno...
  • 1 篇 nirma univ inst ...
  • 1 篇 guangxi univ nat...
  • 1 篇 asutosh coll dep...
  • 1 篇 univ ontario fac...
  • 1 篇 batman univ voca...
  • 1 篇 civil aviat univ...
  • 1 篇 saveetha inst me...
  • 1 篇 jadavpur univ de...
  • 1 篇 univ guadalajara...
  • 1 篇 jadavpur univ de...

作者

  • 7 篇 yadav anupam
  • 6 篇 cheng jiatang
  • 4 篇 chauhan dikshit
  • 3 篇 luo qifang
  • 3 篇 zhou yongquan
  • 2 篇 lin qiuhong
  • 2 篇 abdelsalam abdel...
  • 2 篇 bi jian
  • 2 篇 anita
  • 2 篇 ekinci serdar
  • 2 篇 feng zhichao
  • 2 篇 sarkar ram
  • 2 篇 izci davut
  • 2 篇 demiroren aysen
  • 1 篇 orenc sedat
  • 1 篇 behera h. s.
  • 1 篇 xu peizhen
  • 1 篇 hemant petwal
  • 1 篇 mallipeddi rammo...
  • 1 篇 geem zong woo

语言

  • 31 篇 英文
  • 1 篇 其他
检索条件"主题词=Artificial Electric Field Algorithm"
32 条 记 录,以下是1-10 订阅
排序:
artificial electric field algorithm with dynamic neighborhood learning for global optimization
收藏 引用
PHYSICA SCRIPTA 2025年 第4期100卷 046005-046005页
作者: Lu, Qiuli Cheng, Jiatang Lin, Qiuhong Guilin Univ Technol Educ Dept Guangxi Zhuang Autonomous Reg Key Lab Adv Mfg & Automat Technol Guilin 541006 Peoples R China Guilin Univ Technol Coll Mech & Control Engn Guilin 541006 Peoples R China
artificial electric field algorithm (AEFA) is a simple yet effective search technique, which has displayed good performance in tackling some optimization problems. However, as the complexity of the problem to be solve... 详细信息
来源: 评论
EAEFA-R: Multiple learning-based ensemble artificial electric field algorithm for global optimization
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2025年 318卷
作者: Chauhan, Dikshit Yadav, Anupam Mallipeddi, Rammohan Dr BR Ambedkar Natl Inst Technol Jalandhar Dept Math & Comp Jalandhar 144008 Punjab India Kyungpook Natl Univ Dept Artificial Intelligence Daegu 41566 South Korea
Adjusting the search behaviors of swarm-based algorithms is crucial for solving real-world optimization challenges. Researchers have developed ensemble strategies and self-adaptive mechanisms to enhance the optimizati... 详细信息
来源: 评论
A Multi-Strategy artificial electric field algorithm for Numerical Optimization
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS 2025年
作者: Feng, Zhichao Cheng, Jiatang Guilin Inst Informat Technol Coll Elect Engn Guilin 541100 Guangxi Peoples R China Guilin Univ Technol Coll Mech & Control Engn Educ Dept Guangxi Zhuang Autonomous Reg Key Lab Adv Mfg & Automat Technol Guilin 541006 Guangxi Peoples R China
artificial electric field algorithm (AEFA) is a metaheuristic optimization algorithm proposed in recent years, which has been successfully applied to address various optimization problems. However, it is likely to con... 详细信息
来源: 评论
An oppositional learning and chaotic local search-based artificial electric field algorithm for engineering optimization
收藏 引用
EVOLUTIONARY INTELLIGENCE 2025年 第2期18卷 1-25页
作者: Anita, Shrishti Chamoli, Shrishti Yadav, Anupam Sri Dev Suman Uttarakhand Univ Govt Post Grad Coll Gopeshwar Dept Math Chamoli 246401 Uttarakhand India Dr BR Ambedkar Natl Inst Technol Jalandhar Dept Math & Comp Jalandhar 144008 Punjab India
Metaheuristic algorithms are stochastic optimization techniques inspired by natural phenomena, with their performance driven by two key operators: exploration and exploitation. Despite their success, a common limitati... 详细信息
来源: 评论
An artificial electric field algorithm with a variable spiral search and an optimal solution mutation strategy
收藏 引用
INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING 2025年 第1期16卷
作者: Cheng, Jiatang Feng, Zhichao Guilin Univ Technol Educ Dept Guangxi Zhuang Autonomous Reg Key Lab Adv Mfg & Automat Technol Guilin 541006 Peoples R China Guilin Univ Technol Coll Mech & Control Engn Guilin 541006 Peoples R China
artificial electric field algorithm (AEFA) inspired by Coulomb's law of electrostatic force is a swarm intelligent optimization algorithm. It utilizes the electrostatic force to enable information transmission and... 详细信息
来源: 评论
artificial electric field algorithm with Greedy State Transition Strategy for Spherical Multiple Traveling Salesmen Problem
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS 2022年 第1期15卷 1-24页
作者: Bi, Jian Zhou, Guo Zhou, Yongquan Luo, Qifang Deng, Wu Guangxi Univ Nationalities Coll Artificial Intelligence Nanning 530006 Peoples R China China Univ Polit Sci & Law Dept Sci & Technol Teaching Beijing 100088 Peoples R China Guangxi Key Labs Hybrid Computat & IC Design Anal Nanning 530006 Peoples R China Civil Aviat Univ China Coll Elect Informat & Automat Tianjin 300300 Hebei Peoples R China
The multiple traveling salesman problem (MTSP) is an extension of the traveling salesman problem (TSP). It is found that the MTSP problem on a three-dimensional sphere has more research value. In a spherical space, ea... 详细信息
来源: 评论
artificial electric field algorithm to extract nine parameters of triple-diode photovoltaic model
收藏 引用
INTERNATIONAL JOURNAL OF ENERGY RESEARCH 2021年 第1期45卷 590-604页
作者: Selem, Sameh, I El-Fergany, Attia A. Hasanien, Hany M. Zagazig Univ Fac Engn Elect Power & Machines Dept Zagazig 44519 Egypt Ain Shams Univ Fac Engn Elect Power & Machines Dept Cairo Egypt
This paper addresses a new attempt of the AEFA to define the uncertain model parameters of TDM of PV units. Two commercial PV modules are investigated with intensive simulations and necessary analysis. The parameters ... 详细信息
来源: 评论
artificial electric field algorithm with inertia and repulsion for spherical minimum spanning tree
收藏 引用
APPLIED INTELLIGENCE 2022年 第1期52卷 195-214页
作者: Bi, Jian Zhou, Yongquan Tang, Zhonghua Luo, Qifang Guangxi Univ Nationalities Coll Artificial Intelligence Nanning 530006 Peoples R China Guangxi High Sch Key Lab Complex Syst & Computat Nanning 530006 Peoples R China Guangxi Key Labs Hybrid Computat & IC Design Anal Nanning 530006 Peoples R China
artificial electric field algorithm (AEFA) is a potential global optimization algorithm proposed in recent years and has been successfully applied to various engineering optimizations. However, precocious convergence ... 详细信息
来源: 评论
Stability and agent dynamics of artificial electric field algorithm
收藏 引用
JOURNAL OF SUPERCOMPUTING 2024年 第1期80卷 835-864页
作者: Chauhan, Dikshit Yadav, Anupam Dr BR Ambedkar Natl Inst Technol Jalandhar Dept Math Jalandhar 144008 Punjab India
The artificial electric field algorithm (AEFA) is a recently developed optimization algorithm inspired by the principles of electrostatic force and the law of motion. It operates as a stochastic population-based algor... 详细信息
来源: 评论
An efficient modified artificial electric field algorithm for solving optimization problems and parameter estimation of fuel cell
收藏 引用
INTERNATIONAL JOURNAL OF ENERGY RESEARCH 2021年 第14期45卷 20199-20218页
作者: Houssein, Essam H. Hashim, Fatma A. Ferahtia, Seydali Rezk, Hegazy Minia Univ Fac Comp & Informat Al Minya Egypt Helwan Univ Fac Engn Cairo Egypt Univ Msila Dept Elect Engn Lab Anal Signaux & Syst Msila Algeria Prince Sattam Bin Abdulaziz Univ Coll Engn Wadi Addawaser Al Kharj Saudi Arabia Minia Univ Fac Engn Al Minya Egypt
The artificial electric field algorithm (AEFA) is a recent physics population-based optimization approach inspired by Coulomb's law of electrostatic force and Newton's law of motion. In this paper, an alternat... 详细信息
来源: 评论