咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 理学
    • 1 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 地质学
  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 计算机科学与技术...
    • 1 篇 测绘科学与技术
    • 1 篇 航空宇航科学与技...

主题

  • 1 篇 attention encode...
  • 1 篇 deep learning
  • 1 篇 image denoising
  • 1 篇 synthetic apertu...
  • 1 篇 feature refineme...

机构

  • 1 篇 chinese academy ...
  • 1 篇 university of le...
  • 1 篇 hebei university...
  • 1 篇 hebei university...

作者

  • 1 篇 liu ming
  • 1 篇 liu shuaiqi
  • 1 篇 li bing
  • 1 篇 zhang yu-dong
  • 1 篇 hu qi
  • 1 篇 lei yu
  • 1 篇 hu weiming

语言

  • 1 篇 英文
检索条件"主题词=Attention encoder-decoder network"
1 条 记 录,以下是1-10 订阅
排序:
FRANet: A Feature Refinement attention network for SAR Image Denoising
收藏 引用
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2025年
作者: Liu, Shuaiqi Lei, Yu Hu, Qi Liu, Ming Li, Bing Hu, Weiming Zhang, Yu-Dong Hebei University Machine Vision Engineering Research Center of Hebei Province College of Electronic and Information Engineering Baoding 071002 China Hebei University Education and Teaching Research and Teacher Training Promotion Center Baoding 071002 China Chinese Academy of Sciences Institute of Automation National Laboratory of Pattern Recognition (NLPR) Beijing 100190 China University of Leicester School of Computing and Mathematical Science Leicester LE1 7RH United Kingdom
Since synthetic aperture radar (SAR) images have complex noise and have no clean reference images, SAR image denoising is very challenging. With the development of deep learning, several denoising algorithms based on ... 详细信息
来源: 评论