咨询与建议

限定检索结果

文献类型

  • 470 篇 期刊文献
  • 310 篇 会议
  • 4 篇 学位论文

馆藏范围

  • 784 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 730 篇 工学
    • 488 篇 计算机科学与技术...
    • 299 篇 电气工程
    • 129 篇 信息与通信工程
    • 97 篇 软件工程
    • 63 篇 控制科学与工程
    • 48 篇 仪器科学与技术
    • 30 篇 电子科学与技术(可...
    • 26 篇 机械工程
    • 26 篇 石油与天然气工程
    • 21 篇 生物医学工程(可授...
    • 14 篇 测绘科学与技术
    • 12 篇 动力工程及工程热...
    • 10 篇 交通运输工程
    • 9 篇 材料科学与工程(可...
    • 9 篇 环境科学与工程(可...
    • 9 篇 网络空间安全
    • 7 篇 光学工程
    • 6 篇 化学工程与技术
    • 5 篇 土木工程
  • 128 篇 理学
    • 51 篇 物理学
    • 37 篇 生物学
    • 29 篇 化学
    • 23 篇 数学
    • 10 篇 地球物理学
    • 5 篇 系统科学
  • 88 篇 医学
    • 62 篇 临床医学
    • 24 篇 基础医学(可授医学...
    • 14 篇 特种医学
  • 59 篇 管理学
    • 51 篇 管理科学与工程(可...
    • 8 篇 图书情报与档案管...
  • 6 篇 农学
  • 3 篇 法学
  • 2 篇 经济学
  • 2 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 784 篇 auto-encoder
  • 191 篇 deep learning
  • 50 篇 feature extracti...
  • 47 篇 anomaly detectio...
  • 43 篇 machine learning
  • 37 篇 unsupervised lea...
  • 25 篇 lstm
  • 25 篇 convolutional ne...
  • 21 篇 neural networks
  • 21 篇 classification
  • 19 篇 task analysis
  • 19 篇 deep neural netw...
  • 19 篇 convolutional ne...
  • 18 篇 neural network
  • 16 篇 training
  • 15 篇 fault diagnosis
  • 15 篇 cnn
  • 15 篇 extreme learning...
  • 14 篇 clustering
  • 14 篇 generative adver...

机构

  • 6 篇 fuzhou univ coll...
  • 5 篇 northeastern uni...
  • 5 篇 univ elect sci &...
  • 4 篇 jiangnan univ sc...
  • 4 篇 sichuan univ col...
  • 4 篇 yunnan univ sch ...
  • 4 篇 air force engn u...
  • 4 篇 northeastern uni...
  • 4 篇 southeast univ s...
  • 3 篇 china univ min &...
  • 3 篇 nanjing univ sta...
  • 3 篇 xidian univ sch ...
  • 3 篇 tianjin univ col...
  • 3 篇 jiangnan univ sc...
  • 3 篇 fudan univ acad ...
  • 3 篇 univ elect sci &...
  • 3 篇 north china elec...
  • 3 篇 univ sci & techn...
  • 3 篇 shanghai jiao to...
  • 3 篇 huazhong univ sc...

作者

  • 6 篇 wang shiping
  • 5 篇 liu yang
  • 5 篇 fu yun
  • 5 篇 zhou lihua
  • 4 篇 cai jinyu
  • 4 篇 li rui
  • 4 篇 zhang wanqing
  • 4 篇 wang xiaodan
  • 4 篇 li shuaichao
  • 4 篇 lei lei
  • 4 篇 guo wenzhong
  • 4 篇 cui ying
  • 3 篇 xie xijiong
  • 3 篇 fu r.
  • 3 篇 fayyazi hossein
  • 3 篇 zuo wenbo
  • 3 篇 li yanfeng
  • 3 篇 liu zhen
  • 3 篇 xu kai
  • 3 篇 wang li

语言

  • 758 篇 英文
  • 20 篇 其他
  • 4 篇 中文
  • 3 篇 德文
  • 2 篇 法文
  • 1 篇 意大利文
  • 1 篇 朝鲜文
检索条件"主题词=Auto-Encoder"
784 条 记 录,以下是131-140 订阅
排序:
EXPLORING THE RELATIONSHIPS BETWEEN SCATTERING PHYSICS AND auto-encoder LATENT-SPACE EMBEDDING
EXPLORING THE RELATIONSHIPS BETWEEN SCATTERING PHYSICS AND A...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: De, Shaunak Clanton, Christian Bickerton, Steven Baney, Oliwia Patnaik, Kaushik Orbital Insight Inc 3000 El Camino Real4th Floor Palo Alto CA 94303 USA
Polarimetric SAR (PolSAR) is uniquely able to capture structural and compositional properties of targets leading to improved performance in various classification applications over traditional single-polarization SAR.... 详细信息
来源: 评论
A Performance Comparison of auto-encoder and Its Variants for Classification  1
A Performance Comparison of Auto-Encoder and Its Variants fo...
收藏 引用
1st International Conference on Signals and Systems (ICSigSys)
作者: Lee, Jae-Neung Kwak, Keun-Chang Chosun Univ Dept Control & Instrumentat Engn 375 Seosuk Dong Gwangju 501759 South Korea
In this paper, we present auto-encoder (AE), stacked auto-encoder (SAE) and sparse auto-encoder (SPAE) to classify gaits of horse riding for real riding coaching. The parameters of each auto-encoder are adjusted to co... 详细信息
来源: 评论
DEEP FEATURE EXTRACTION BASED ON SIAMESE NETWORK AND auto-encoder FOR HYPERSPECTRAL IMAGE CLASSIFICATION  39
DEEP FEATURE EXTRACTION BASED ON SIAMESE NETWORK AND AUTO-EN...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Miao, Jiajia Wang, Bin Wu, Xiaofeng Zhang, Liming Hu, Bo Zhang, Jian Qiu Fudan Univ Key Lab Informat Sci Electromagnet Waves MoE Shanghai Peoples R China Fudan Univ Sch Informat Sci & Technol Res Ctr Smart Networks & Syst Shanghai Peoples R China
Hyperspectral image classification with limited training samples has become a hot research topic recently. Though deep convolution neural network shows powerful ability for feature extraction, its good performance oft... 详细信息
来源: 评论
Application of Transformer with auto-encoder in Motor Imagery EEG Signals  14
Application of Transformer with Auto-Encoder in Motor Imager...
收藏 引用
14th IEEE International Conference on Wireless Communications and Signal Processing (WCSP)
作者: Jiang, Rui Sun, Liuting Wang, Xiaoming Xu, Youyun Nanjing Univ Posts & Telecommun Coll Telecommun & Informat Engn Nanjing Jiangsu Peoples R China
The motor imagery brain-computer interface (MI-BCI) based on motor imagery has always been the focus of scholars. However, traditional motor imagery electroencephalogram (EEG) recognition systems cannot accurately ext... 详细信息
来源: 评论
Iterative Imputation of Missing Data Using auto-encoder Dynamics  27th
Iterative Imputation of Missing Data Using Auto-Encoder Dyna...
收藏 引用
27th International Conference on Neural Information Processing
作者: Smieja, Marek Kolomycki, Maciej Struski, Lukasz Juda, Mateusz Figueiredo, Mario A. T. Jagiellonian Univ Fac Math & Comp Sci Krakow Poland Cracow Univ Technol Fac Mech Engn Inst Appl Informat Krakow Poland Univ Lisbon Inst Telecomunicacoes Inst Super Tecn Lisbon Portugal
This paper introduces an approach to missing data imputation based on deep auto-encoder models, adequate to high-dimensional data exhibiting complex dependencies, such as images. The method exploits the properties of ... 详细信息
来源: 评论
L2G auto-encoder: Understanding Point Clouds by Local-to-Global Reconstruction with Hierarchical Self-Attention  19
L2G Auto-encoder: Understanding Point Clouds by Local-to-Glo...
收藏 引用
27th ACM International Conference on Multimedia (MM)
作者: Liu, Xinhai Han, Zhizhong Wen, Xin Liu, Yu-Shen Zwicker, Matthias Tsinghua Univ Sch Software Beijing Peoples R China Beijing Natl Res Ctr Informat Sci & Technol BNRis Beijing Peoples R China Univ Maryland Dept Comp Sci College Pk MD 20742 USA
auto-encoder is an important architecture to understand point clouds in an encoding and decoding procedure of self reconstruction. Current auto-encoder mainly focuses on the learning of global structure by global shap... 详细信息
来源: 评论
Outlier Detection for Power Data Based on Contractive auto-encoder
Outlier Detection for Power Data Based on Contractive Auto-E...
收藏 引用
1st International Conference on Advanced Information Science and System (AISS)
作者: Lu, Yuan Leng, Xiaojie Xu, Kang Luan, Weiping Yang, Wei Li, Jing Weihai Power Supply Co Shandong State Grid Weihai Shandong Peoples R China Nanjing Univ Aeronaut & Astronaut Coll Comp Sci & Technol Nanjing Jiangsu Peoples R China
With the continuous development of data science, big data technology has been widely used in the power industry. Since the operation of the power grid is related to the whole industrial production and the stability of... 详细信息
来源: 评论
Stacked sparse auto-encoder for deep clustering  17
Stacked sparse auto-encoder for deep clustering
收藏 引用
IEEE Int Conf on Parallel and Distributed Processing with Applications, Big Data and Cloud Computing, Sustainable Computing and Communications, Social Computing and Networking (ISPA/BDCloud/SocialCom/SustainCom)
作者: Cai, Jinyu Wang, Shiping Guo, Wenzhong Fuzhou Univ Coll Math & Comp Sci Fuzhou 350116 Peoples R China
Deep clustering attempts to capture the feature representation that benefits the clustering issue for inputs. Although the existing deep clustering methods have achieved encouraging performance in many research fields... 详细信息
来源: 评论
A Low Inertia Guided auto-encoder for Anomaly Detection in Networks  28
A Low Inertia Guided Auto-Encoder for Anomaly Detection in N...
收藏 引用
28th International Conference on Software, Telecommunications and Computer Networks (SoftCOM)
作者: Nguimbous, Yves Nsoga Ksantini, Riadh Bouhoula, Adel Higher Sch Commun Tunis Digital Secur Res Lab Tunis Tunisia Univ Bahrain Dept Comp Sci Coll IT Zallaq Bahrain Arabian Gulf Univ Coll Grad Studies Manama Bahrain
In the case of One-class classification, the low variance directions tend to be more informative to build a model on target class. This paper introduces a low Inertia auto-encoder for anomaly detection. The proposed m... 详细信息
来源: 评论
Stochastic Decorrelation Constraint Regularized auto-encoder for Visual Recognition
Stochastic Decorrelation Constraint Regularized Auto-Encoder...
收藏 引用
23rd International Conference on MultiMedia Modeling (MMM)
作者: Mao, Fengling Xiong, Wei Du, Bo Zhang, Lefei Wuhan Univ Sch Comp Wuhan Hubei Peoples R China Collaborat Innovat Ctr Geospatial Technol Wuhan Hubei Peoples R China
Deep neural networks have achieved state-of-the-art performance on many applications such as image classification, object detection and semantic segmentation. But the difficulty of optimizing the networks still exists... 详细信息
来源: 评论