咨询与建议

限定检索结果

文献类型

  • 473 篇 期刊文献
  • 311 篇 会议
  • 4 篇 学位论文

馆藏范围

  • 788 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 734 篇 工学
    • 489 篇 计算机科学与技术...
    • 300 篇 电气工程
    • 129 篇 信息与通信工程
    • 98 篇 软件工程
    • 63 篇 控制科学与工程
    • 48 篇 仪器科学与技术
    • 31 篇 电子科学与技术(可...
    • 26 篇 机械工程
    • 26 篇 石油与天然气工程
    • 21 篇 生物医学工程(可授...
    • 14 篇 测绘科学与技术
    • 12 篇 动力工程及工程热...
    • 11 篇 交通运输工程
    • 10 篇 材料科学与工程(可...
    • 9 篇 环境科学与工程(可...
    • 9 篇 网络空间安全
    • 7 篇 光学工程
    • 6 篇 土木工程
    • 6 篇 化学工程与技术
  • 128 篇 理学
    • 51 篇 物理学
    • 37 篇 生物学
    • 29 篇 化学
    • 23 篇 数学
    • 10 篇 地球物理学
    • 5 篇 系统科学
  • 88 篇 医学
    • 62 篇 临床医学
    • 24 篇 基础医学(可授医学...
    • 14 篇 特种医学
  • 59 篇 管理学
    • 51 篇 管理科学与工程(可...
    • 8 篇 图书情报与档案管...
  • 6 篇 农学
  • 3 篇 法学
  • 2 篇 经济学
  • 2 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 788 篇 auto-encoder
  • 193 篇 deep learning
  • 50 篇 feature extracti...
  • 47 篇 anomaly detectio...
  • 45 篇 machine learning
  • 38 篇 unsupervised lea...
  • 25 篇 lstm
  • 25 篇 convolutional ne...
  • 21 篇 neural networks
  • 21 篇 classification
  • 19 篇 task analysis
  • 19 篇 deep neural netw...
  • 19 篇 convolutional ne...
  • 18 篇 neural network
  • 16 篇 training
  • 15 篇 fault diagnosis
  • 15 篇 cnn
  • 15 篇 extreme learning...
  • 14 篇 clustering
  • 14 篇 generative adver...

机构

  • 6 篇 fuzhou univ coll...
  • 5 篇 northeastern uni...
  • 5 篇 univ elect sci &...
  • 4 篇 jiangnan univ sc...
  • 4 篇 sichuan univ col...
  • 4 篇 yunnan univ sch ...
  • 4 篇 air force engn u...
  • 4 篇 northeastern uni...
  • 4 篇 southeast univ s...
  • 3 篇 china univ min &...
  • 3 篇 nanjing univ sta...
  • 3 篇 xidian univ sch ...
  • 3 篇 tianjin univ col...
  • 3 篇 jiangnan univ sc...
  • 3 篇 fudan univ acad ...
  • 3 篇 univ elect sci &...
  • 3 篇 north china elec...
  • 3 篇 univ sci & techn...
  • 3 篇 shanghai jiao to...
  • 3 篇 huazhong univ sc...

作者

  • 6 篇 wang shiping
  • 5 篇 liu yang
  • 5 篇 fu yun
  • 5 篇 zhou lihua
  • 4 篇 cai jinyu
  • 4 篇 li rui
  • 4 篇 zhang wanqing
  • 4 篇 wang xiaodan
  • 4 篇 li shuaichao
  • 4 篇 lei lei
  • 4 篇 guo wenzhong
  • 4 篇 cui ying
  • 3 篇 xie xijiong
  • 3 篇 fu r.
  • 3 篇 fayyazi hossein
  • 3 篇 zuo wenbo
  • 3 篇 li yanfeng
  • 3 篇 liu zhen
  • 3 篇 xu kai
  • 3 篇 wang li

语言

  • 761 篇 英文
  • 21 篇 其他
  • 4 篇 中文
  • 3 篇 德文
  • 2 篇 法文
  • 1 篇 意大利文
  • 1 篇 朝鲜文
检索条件"主题词=Auto-Encoder"
788 条 记 录,以下是11-20 订阅
排序:
GNN-based auto-encoder for Short Linear Block Codes: A DRL Approach
收藏 引用
IEEE Transactions on Communications 2025年
作者: Tian, Kou Yue, Chentao She, Changyang Vucetic, Branka Li, Yonghui School of Electrical and Computer Engineering University of Sydney Sydney Australia Harbin Institute of Technology (Shenzhen) School of Electronic and Information Engineering Shenzhen China
This paper presents a novel auto-encoder based end-to-end channel encoding and decoding. It integrates deep reinforcement learning (DRL) and graph neural networks (GNN) in code design by modeling the generation of cod... 详细信息
来源: 评论
auto-encoder based dimensionality reduction
收藏 引用
NEUROCOMPUTING 2016年 第0期184卷 232-242页
作者: Wang, Yasi Yao, Hongxun Zhao, Sicheng Harbin Inst Technol Sch Comp Sci & Technol Harbin 150006 Peoples R China
auto-encoder a tricky three-layered neural network, known as auto-association before, constructs the "building block" of deep learning, which has been demonstrated to achieve good performance in various doma... 详细信息
来源: 评论
Inverse design of GaN HEMT heterostructures via deep learning with enhanced auto-encoder framework
收藏 引用
Materials Today Communications 2025年 46卷
作者: Shu Wei Meilan Hao Lina Yu Weijun Li Linjun Sun Min Wu Yan Pang Jufeng Han AnnLab Institute of Semiconductors Chinese Academy of Sciences Beijing 100083 China College of Materials Science and Opto-Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China School of Information and Electrical Engineering Hebei University of Engineering Handan 056038 China School of Integrated Circuits University of Chinese Academy of Sciences Beijing 100049 China School of Industry-education Integration University of Chinese Academy of Sciences Beijing 100049 China
The design of GaN-based heterostructure materials is critical for the performance of HEMT (High Electron Mobility Transistor) devices, determining the upper limit of the device’s capabilities. Traditional design meth... 详细信息
来源: 评论
auto-encoder based bagging architecture for sentiment analysis
收藏 引用
JOURNAL OF VISUAL LANGUAGES AND COMPUTING 2014年 第6期25卷 840-849页
作者: Rong, Wenge Nie, Yifan Ouyang, Yuanxin Peng, Baolin Xiong, Zhang Beihang Univ Sch Comp Sci & Engn Beijing 100191 Peoples R China Beihang Univ Res Inst Shenzhen 518057 Peoples R China Beihang Univ Sinofrench Engn Sch Beijing 100191 Peoples R China
Sentiment analysis has long been a hot topic for understanding users statements online. Previously many machine learning approaches for sentiment analysis such as simple feature-oriented SVM or more complicated probab... 详细信息
来源: 评论
A Hybrid Residual Wide-Kernel auto-encoder With Vision Transformer for Plant Disease Detection
收藏 引用
Journal of Phytopathology 2025年 第3期173卷
作者: Vamsidhar Enireddy J. Anitha N. Mahendra G. Kishore Department of Computer Science and Engineering Koneru Lakshmaiah Education Foundation Guntur Andhra Pradesh India Department of Computer Science and Engineering Malla Reddy Engineering College (Autonomous) Hyderabad Telangana India Miracle Educational Society Group of Institutions Visakhapatnam Andhra Pradesh India Department of Computer Science and Engineering RISE Krishna Sai Prakasam Group of Institutions Ongole Andhra Pradesh India
Plant disease diagnosis is an important aspect of managing and producing crops. Recent developments in deep-learning models provide robust performance in detecting plant disease with improved accuracy. Several methods... 详细信息
来源: 评论
Wavelet Loss Function for auto-encoder
收藏 引用
IEEE ACCESS 2021年 9卷 27101-27108页
作者: Zhu, Qiuyu Wang, Hu Zhang, Ruixin Shanghai Univ Sch Commun & Informat Engn Shanghai 201900 Peoples R China
In the field of image generation, especially for auto-encoder models, how to extract better features and obtain better quality reconstruction samples by modifying network structure and training algorithms has always b... 详细信息
来源: 评论
Comparative study of methods to obtain the number of hidden neurons of an auto-encoder in a high-dimensionality context
收藏 引用
IEEE LATIN AMERICA TRANSACTIONS 2020年 第12期18卷 2196-2203页
作者: Vega-Gutierrez, Hector R. Castorena, Carlos Alejo, Roberto Granda-Gutierrez, Everardo E. Tecnol Nacl Mexico IT Toluca Metepec 52149 Estado De Mexic Mexico Univ Autonoma Estado Mexico CU UAEM Atlacomulco Atlacomulco 50400 Estado De Mexic Mexico
Fourteen formulas from the state-of-art were used in this paper to find the optimal number of neurons in the hidden layer of an autoencoder neural network. The latter is employed to reduce the dataset dimension on hig... 详细信息
来源: 评论
Intelligent cross-machine fault diagnosis approach with deep auto-encoder and domain adaptation
收藏 引用
NEUROCOMPUTING 2020年 第0期383卷 235-247页
作者: Li, Xiang Jia, Xiao-Dong Zhang, Wei Ma, Hui Luo, Zhong Li, Xu Northeastern Univ Coll Sci Shenyang 110819 Peoples R China Northeastern Univ Minist Educ Safe Min Deep Met Mines Key Lab Shenyang 110819 Liaoning Peoples R China Univ Cincinnati Dept Mech Engn NSF I UCR Ctr Intelligent Maintenance Syst Cincinnati OH 45221 USA Shenyang Aerosp Univ Sch Aerosp Engn Shenyang 110136 Peoples R China Northeastern Univ Key Lab Vibrat & Control Aeroprop Syst Minist Educ Shenyang 110819 Peoples R China Northeastern Univ State Key Lab Rolling & Automat Shenyang 110819 Peoples R China
Recently, due to the rising industrial demands for intelligent machinery fault diagnosis with strong generalization, transfer learning techniques have been used to enhance adaptability of data-driven approaches. Parti... 详细信息
来源: 评论
Stacked Fusion Supervised auto-encoder with an Additional Classification Layer
收藏 引用
NEURAL PROCESSING LETTERS 2020年 第3期51卷 2649-2667页
作者: Li, Rui Wang, Xiaodan Quan, Wen Lei, Lei Air Force Engn Univ Coll Air & Missile Def Xian 710051 Peoples R China Air Force Engn Univ Coll Air Traff Control & Nav Xian 710051 Peoples R China
auto-encoders are unsupervised deep learning models, which try to learn hidden representations to reconstruct the inputs. While the learned representations are suitable for applications related to unsupervised reconst... 详细信息
来源: 评论
Detecting community structure and structural hole spanner simultaneously by using graph convolutional network based auto-encoder
收藏 引用
NEUROCOMPUTING 2020年 410卷 138-150页
作者: Luo, JiaXing Du, YaJun XiHua Univ Sch Comp & Sotware Chengdu 620000 Peoples R China
Both Community and Structural Hole (SH) Spanner Detection are significant research tasks in social network analysis. Due to the close topological relevance between communities and structure hole spanners, the two task... 详细信息
来源: 评论