咨询与建议

限定检索结果

文献类型

  • 476 篇 期刊文献
  • 310 篇 会议
  • 4 篇 学位论文

馆藏范围

  • 790 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 736 篇 工学
    • 491 篇 计算机科学与技术...
    • 301 篇 电气工程
    • 129 篇 信息与通信工程
    • 98 篇 软件工程
    • 64 篇 控制科学与工程
    • 48 篇 仪器科学与技术
    • 31 篇 电子科学与技术(可...
    • 26 篇 机械工程
    • 26 篇 石油与天然气工程
    • 22 篇 生物医学工程(可授...
    • 14 篇 测绘科学与技术
    • 12 篇 动力工程及工程热...
    • 10 篇 交通运输工程
    • 9 篇 材料科学与工程(可...
    • 9 篇 环境科学与工程(可...
    • 9 篇 网络空间安全
    • 7 篇 光学工程
    • 7 篇 化学工程与技术
    • 5 篇 土木工程
  • 129 篇 理学
    • 51 篇 物理学
    • 38 篇 生物学
    • 29 篇 化学
    • 23 篇 数学
    • 10 篇 地球物理学
    • 5 篇 系统科学
  • 90 篇 医学
    • 63 篇 临床医学
    • 24 篇 基础医学(可授医学...
    • 14 篇 特种医学
  • 59 篇 管理学
    • 51 篇 管理科学与工程(可...
    • 8 篇 图书情报与档案管...
  • 6 篇 农学
  • 3 篇 法学
  • 2 篇 经济学
  • 2 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 790 篇 auto-encoder
  • 193 篇 deep learning
  • 51 篇 feature extracti...
  • 48 篇 anomaly detectio...
  • 43 篇 machine learning
  • 38 篇 unsupervised lea...
  • 26 篇 convolutional ne...
  • 25 篇 lstm
  • 21 篇 neural networks
  • 21 篇 classification
  • 19 篇 task analysis
  • 19 篇 deep neural netw...
  • 19 篇 convolutional ne...
  • 18 篇 neural network
  • 16 篇 cnn
  • 16 篇 training
  • 15 篇 fault diagnosis
  • 15 篇 extreme learning...
  • 14 篇 clustering
  • 14 篇 generative adver...

机构

  • 6 篇 fuzhou univ coll...
  • 5 篇 northeastern uni...
  • 5 篇 univ elect sci &...
  • 4 篇 jiangnan univ sc...
  • 4 篇 sichuan univ col...
  • 4 篇 yunnan univ sch ...
  • 4 篇 air force engn u...
  • 4 篇 northeastern uni...
  • 4 篇 southeast univ s...
  • 3 篇 china univ min &...
  • 3 篇 nanjing univ sta...
  • 3 篇 xidian univ sch ...
  • 3 篇 tianjin univ col...
  • 3 篇 jiangnan univ sc...
  • 3 篇 fudan univ acad ...
  • 3 篇 univ elect sci &...
  • 3 篇 north china elec...
  • 3 篇 univ sci & techn...
  • 3 篇 shanghai jiao to...
  • 3 篇 huazhong univ sc...

作者

  • 6 篇 wang shiping
  • 5 篇 liu yang
  • 5 篇 fu yun
  • 5 篇 zhou lihua
  • 4 篇 cai jinyu
  • 4 篇 li rui
  • 4 篇 zhang wanqing
  • 4 篇 wang xiaodan
  • 4 篇 li shuaichao
  • 4 篇 lei lei
  • 4 篇 guo wenzhong
  • 4 篇 cui ying
  • 3 篇 xie xijiong
  • 3 篇 fu r.
  • 3 篇 fayyazi hossein
  • 3 篇 zuo wenbo
  • 3 篇 li yanfeng
  • 3 篇 liu zhen
  • 3 篇 wang li
  • 3 篇 liu jing

语言

  • 759 篇 英文
  • 18 篇 其他
  • 4 篇 中文
  • 1 篇 德文
  • 1 篇 朝鲜文
检索条件"主题词=Auto-Encoder"
790 条 记 录,以下是561-570 订阅
排序:
On Open-Set, High-Fidelity and Identity-Specific Face Transformation
收藏 引用
IEEE ACCESS 2020年 8卷 224643-224653页
作者: Zhang, Longhao Pan, Xipeng Yang, Huihua Li, Lingqiao Beijing Univ Posts & Telecommun Sch Artificial Intelligence Beijing 100876 Peoples R China Guilin Univ Elect Technol Sch Comp Sci & Informat Secur Guilin 541004 Peoples R China Guangdong Prov Peoples Hosp Guangdong Acad Med Sci Dept Radiol Guangzhou 510080 Peoples R China
In this paper, a Generative Adversarial Networks-based framework has been proposed for identity-specific face transformation with high fidelity in open domains. Specifically, for any face, the pro-posed framework can ... 详细信息
来源: 评论
Adaptive Importance Channel Selection for Perceptual Image Compression
收藏 引用
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS 2020年 第9期14卷 3823-3840页
作者: He, Yifan Li, Feng Bai, Huihui Zhao, Yao Beijing Jiaotong Univ Inst Informat Sci Beijing 100044 Peoples R China
Recently, auto-encoder has emerged as the most popular method in convolutional neural network (CNN) based image compression and has achieved impressive performance. In the traditional auto-encoder based image compress... 详细信息
来源: 评论
Deep-learning-based surrogate model for reservoir simulation with time-varying well controls
收藏 引用
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING 2020年 192卷 107273-107273页
作者: Jin, Zhaoyang Larry Liu, Yimin Durlofsky, Louis J. Stanford Univ Dept Energy Resources Engn Stanford CA 94305 USA
A new deep-learning-based reduced-order modeling (ROM) framework is proposed for application in subsurface flow simulation. The reduced-order model is based on an existing embed-to-control (E2C) framework and includes... 详细信息
来源: 评论
Multivariate Abnormal Detection for Industrial Control Systems Using 1D CNN and GRU
收藏 引用
IEEE ACCESS 2020年 8卷 88348-88359页
作者: Xie, Xin Wang, Bin Wan, Tiancheng Tang, Wenliang East China Jiaotong Univ Sch Informat Engn Nanchang 330013 Jiangxi Peoples R China
Currently, most anomaly detection approaches in industrial control systems (ICSs) use network event logs to build models, and current unsupervised machine learning methods rarely use spatiotemporal correlations and ot... 详细信息
来源: 评论
Attention-Based Event Characterization for Scarce Vehicular Sensing Data
IEEE OPEN JOURNAL OF VEHICULAR TECHNOLOGY
收藏 引用
IEEE OPEN JOURNAL OF VEHICULAR TECHNOLOGY 2020年 1卷 317-330页
作者: Taherifard, Nima Simsek, Murat Lascelles, Charles Kantarci, Burak Univ Ottawa Sch Elect Engn & Comp Sci Ottawa ON Canada Prod Dev Raven Connected 441 MacLaren St Ottawa ON K2P 2H3 Canada
Characterizing risky driving behavior is crucial in a connected vehicle environment, particularly to improve driving experience through enhanced safety features. Artificial intelligence-backed solutions are vital comp... 详细信息
来源: 评论
Multimodal Biometrics Recognition from Facial Video with Missing Modalities Using Deep Learning
收藏 引用
JOURNAL OF INFORMATION PROCESSING SYSTEMS 2020年 第1期16卷 6-29页
作者: Maity, Sayan Abdel-Mottaleb, Mohamed Asfour, Shihab S. Univ Miami Dept Ind Engn Coral Gables FL 33124 USA Univ Miami Dept Elect & Comp Engn Coral Gables FL 33124 USA
Biometrics identification using multiple modalities has attracted the attention of many researchers as it produces more robust and trustworthy results than single modality biometrics. In this paper, we present a novel... 详细信息
来源: 评论
Deep Neural Networks with Extreme Learning Machine for Seismic Data Compression
收藏 引用
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020年 第3期45卷 1367-1377页
作者: Nuha, Hilal H. Balghonaim, Adil Liu, Bo Mohandes, Mohamed Deriche, Mohamed Fekri, Faramarz King Fahd Univ Petr Ctr Energysignal ProcCeGPMineralsKFUPM Dhahran 31261 Saudi Arabia Georgia Inst Technol Sch Elect Comp Engn Atlanta GA USA
Advances on seismic survey techniques require a large number of geophones. This leads to an exponential growth in the size of data and prohibitive demands on storage and network communication resources. Therefore, it ... 详细信息
来源: 评论
A GPU-based accelerated ELM and deep-ELM training algorithms for traditional and deep neural networks classifiers
收藏 引用
INTELLIGENT SYSTEMS WITH APPLICATIONS 2022年 15卷
作者: Chegni, Arezoo Moradi Ghavami, Behnam Eftekhari, Mahdi Shahid Bahonar Univ Kerman Dept Comp Engn Kerman Iran
The extreme learning machine (ELM) has been effectively used for training single-layer neural networks. In recent years, great attention has been paid to deep extreme learning machine (D-ELM) structures. Deep neural n... 详细信息
来源: 评论
Conventional neural network for blind image blur correction using latent semantics
收藏 引用
SOFT COMPUTING 2020年 第20期24卷 15223-15237页
作者: Gowthami, S. Harikumar, R. Dr NGP Inst Technol Dept Biomed Engn Coimbatore Tamil Nadu India Bannari Amman Inst Technol Dept Elect & Commun Engn Sathyamangalam India
In this work, deep learning for enhancing the sharpness of blurred image is investigated. Initial pre-processing is blur image kernel estimation which is critical for blind image de-blurring. In prior investigation, h... 详细信息
来源: 评论
Performance Evaluation of Deep autoencoder Network for Speech Emotion Recognition
收藏 引用
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS 2020年 第2期11卷 606-611页
作者: AndleebSiddiqui, Maria Hussain, Wajahat Ali, Syed Abbas Danish-ur-Rehman NED Univ Engn & Technol Comp Sci & Informat Technol Karachi Pakistan Karachi Shipyard & Engn Works Ltd Karachi Pakistan NED Univ Engn & Technol Comp & Informat Syst Engn Karachi Pakistan NED Univ Engn & Technol Elect Engn Karachi Pakistan
The learning methods with multiple levels of representation is called deep learning methods. The composition of simple but now linear modules results in deep-learning model. Deep-learning in near future will have many... 详细信息
来源: 评论