咨询与建议

限定检索结果

文献类型

  • 476 篇 期刊文献
  • 310 篇 会议
  • 4 篇 学位论文

馆藏范围

  • 790 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 736 篇 工学
    • 491 篇 计算机科学与技术...
    • 301 篇 电气工程
    • 129 篇 信息与通信工程
    • 98 篇 软件工程
    • 64 篇 控制科学与工程
    • 48 篇 仪器科学与技术
    • 31 篇 电子科学与技术(可...
    • 26 篇 机械工程
    • 26 篇 石油与天然气工程
    • 22 篇 生物医学工程(可授...
    • 14 篇 测绘科学与技术
    • 12 篇 动力工程及工程热...
    • 10 篇 交通运输工程
    • 9 篇 材料科学与工程(可...
    • 9 篇 环境科学与工程(可...
    • 9 篇 网络空间安全
    • 7 篇 光学工程
    • 7 篇 化学工程与技术
    • 5 篇 土木工程
  • 129 篇 理学
    • 51 篇 物理学
    • 38 篇 生物学
    • 29 篇 化学
    • 23 篇 数学
    • 10 篇 地球物理学
    • 5 篇 系统科学
  • 90 篇 医学
    • 63 篇 临床医学
    • 24 篇 基础医学(可授医学...
    • 14 篇 特种医学
  • 59 篇 管理学
    • 51 篇 管理科学与工程(可...
    • 8 篇 图书情报与档案管...
  • 6 篇 农学
  • 3 篇 法学
  • 2 篇 经济学
  • 2 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 790 篇 auto-encoder
  • 193 篇 deep learning
  • 51 篇 feature extracti...
  • 48 篇 anomaly detectio...
  • 43 篇 machine learning
  • 38 篇 unsupervised lea...
  • 26 篇 convolutional ne...
  • 25 篇 lstm
  • 21 篇 neural networks
  • 21 篇 classification
  • 19 篇 task analysis
  • 19 篇 deep neural netw...
  • 19 篇 convolutional ne...
  • 18 篇 neural network
  • 16 篇 cnn
  • 16 篇 training
  • 15 篇 fault diagnosis
  • 15 篇 extreme learning...
  • 14 篇 clustering
  • 14 篇 generative adver...

机构

  • 6 篇 fuzhou univ coll...
  • 5 篇 northeastern uni...
  • 5 篇 univ elect sci &...
  • 4 篇 jiangnan univ sc...
  • 4 篇 sichuan univ col...
  • 4 篇 yunnan univ sch ...
  • 4 篇 air force engn u...
  • 4 篇 northeastern uni...
  • 4 篇 southeast univ s...
  • 3 篇 china univ min &...
  • 3 篇 nanjing univ sta...
  • 3 篇 xidian univ sch ...
  • 3 篇 tianjin univ col...
  • 3 篇 jiangnan univ sc...
  • 3 篇 fudan univ acad ...
  • 3 篇 univ elect sci &...
  • 3 篇 north china elec...
  • 3 篇 univ sci & techn...
  • 3 篇 shanghai jiao to...
  • 3 篇 huazhong univ sc...

作者

  • 6 篇 wang shiping
  • 5 篇 liu yang
  • 5 篇 fu yun
  • 5 篇 zhou lihua
  • 4 篇 cai jinyu
  • 4 篇 li rui
  • 4 篇 zhang wanqing
  • 4 篇 wang xiaodan
  • 4 篇 li shuaichao
  • 4 篇 lei lei
  • 4 篇 guo wenzhong
  • 4 篇 cui ying
  • 3 篇 xie xijiong
  • 3 篇 fu r.
  • 3 篇 fayyazi hossein
  • 3 篇 zuo wenbo
  • 3 篇 li yanfeng
  • 3 篇 liu zhen
  • 3 篇 wang li
  • 3 篇 liu jing

语言

  • 759 篇 英文
  • 18 篇 其他
  • 4 篇 中文
  • 1 篇 德文
  • 1 篇 朝鲜文
检索条件"主题词=Auto-Encoder"
790 条 记 录,以下是721-730 订阅
排序:
Combining local and global: Rich and robust feature pooling for visual recognition
收藏 引用
PATTERN RECOGNITION 2017年 第0期62卷 225-235页
作者: Xiong, Wei Zhang, Lefei Du, Bo Tao, Dacheng Wuhan Univ Key Lab Aerosp Informat Secur & Trusted Comp Minist Educ State Key Lab Software EngnSch Comp Wuhan 430072 Hubei Peoples R China Univ Technol Ctr Quantum Computat & Intelligent Syst Sydney NSW 2007 Australia
The human visual system proves expert in discovering patterns in both global and local feature space. Can we design a similar way for unsupervised feature learning? In this paper, we propose a novel spatial pooling me... 详细信息
来源: 评论
autoencoder-based Feature Learning from a 2D Depth Map and 3D Skeleton for Action Recognition
收藏 引用
电脑学刊 2018年 第4期29卷 82-95页
作者: Zhi-Ze Wu Shou-Hong Wan Li Yan Li-Hua Yue
3D skeleton is compact for human action recognition. Existing approaches focus mainly on performing action recognition with only joint coordinates. However, they are difficult recognizing some similar or complex actio... 详细信息
来源: 评论
HSAE: A Hessian regularized sparse auto-encoders
收藏 引用
NEUROCOMPUTING 2016年 187卷 59-65页
作者: Liu, Weifeng Ma, Tengzhou Tao, Dapeng You, Jane China Univ Petr Coll Informat & Control Engn Qingdao Peoples R China Yunnan Univ Sch Informat Sci & Engn Kunming Peoples R China Hong Kong Polytech Univ Dept Comp Hong Kong Hong Kong Peoples R China
auto-encoders are one kinds of promising non-probabilistic representation learning paradigms that can efficiently learn stable deterministic features. Recently, auto-encoder algorithms are drawing more and more attent... 详细信息
来源: 评论
DeepShape: Deep-Learned Shape Descriptor for 3D Shape Retrieval
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2017年 第7期39卷 1335-1345页
作者: Xie, Jin Dai, Guoxian Zhu, Fan Wong, Edward K. Fang, Yi New York Univ Abu Dhabi Dept Elect & Comp Engn Abu Dhabi 129188 U Arab Emirates NYU Tandon Sch Engn Dept Comp Sci & Engn New York NY 10012 USA
Complex geometric variations of 3D models usually pose great challenges in 3D shape matching and retrieval. In this paper, we propose a novel 3D shape feature learning method to extract high-level shape features that ... 详细信息
来源: 评论
Using speech technology for quantifying behavioral characteristics in peer-led team learning sessions
收藏 引用
COMPUTER SPEECH AND LANGUAGE 2017年 46卷 343-366页
作者: Dubey, Harishchandra Sangwan, Abhijeet Hansen, John H. L. Univ Texas Dallas Erik Jonsson Sch Engn Comp Sci Ctr Robust Speech Syst Richardson TX 75080 USA
Peer-Led Team Learning (PLTL) is a learning methodology where a peer-leader co-ordinate a small-group of students to collaboratively solve technical problems. PLTL have been adopted for various science, engineering, t... 详细信息
来源: 评论
Supervised source enhancement composed of nonnegative auto-encoders and complementarity subtraction
Supervised source enhancement composed of nonnegative auto-e...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Kenta Niwa Yuma Koizumi Tomoko Kawase Kazunori Kobayashi Yusuke Hioka NTT Media Intelligence Laboratories NTT Corporation Japan Department of Mechanical Engineering University of Auckland New Zealand
A method for constructing deep neural networks (DNNs) for accurate supervised source enhancement is proposed. Attempts were made in previous studies to estimate the power spectral densities (PSDs) of sound sources, wh... 详细信息
来源: 评论
Low-Dose CT With a Residual encoder-Decoder Convolutional Neural Network
收藏 引用
IEEE TRANSACTIONS ON MEDICAL IMAGING 2017年 第12期36卷 2524-2535页
作者: Chen, Hu Zhang, Yi Kalra, Mannudeep K. Lin, Feng Chen, Yang Liao, Peixi Zhou, Jiliu Wang, Ge Sichuan Univ Coll Comp Sci Chengdu 610065 Sichuan Peoples R China Massachusetts Gen Hosp Dept Radiol Boston MA 02114 USA Southeast Univ Lab Image Sci & Technol Nanjing 210096 Jiangsu Peoples R China Southeast Univ Key Lab Comp Network & Informat Integrat Minist Educ Nanjing 210096 Jiangsu Peoples R China Sixth Peoples Hosp Chengdu Dept Sci Res & Educ Chengdu 610065 Sichuan Peoples R China Rensselaer Polytech Inst Dept Biomed Engn Troy NY 12180 USA
Given the potential risk of X-ray radiation to the patient, low-dose CT has attracted a considerable interest in the medical imaging field. Currently, the main stream low-dose CT methods include vendor-specific sinogr... 详细信息
来源: 评论
An improved vector quantization method using deep neural network
收藏 引用
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS 2017年 72卷 178-183页
作者: Jiang, Wenbin Liu, Peilin Wen, Fei Shanghai Jiao Tong Univ Dept Elect Engn Shanghai 200240 Peoples R China Air Force Engn Univ Air Control & Nav Inst Xian 710000 Peoples R China
To address the challenging problem of vector quantization (VQ) for high dimensional vector using large coding bits, this work proposes a novel deep neural network (DNN) based VQ method. This method uses a k-means base... 详细信息
来源: 评论
automatic feature extraction of time-series applied to fault severity assessment of helical gearbox in stationary and non-stationary speed operation
收藏 引用
APPLIED SOFT COMPUTING 2017年 58卷 53-64页
作者: Cabrera, Diego Sancho, Fernando Li, Chuan Cerrada, Mariela Sanchez, Rene-Vinicio Pacheco, Fannia de Oliveira, Jose Valente Univ Politecn Salesiana Sede Cuenca Dept Mech Engn Cuenca Ecuador Univ Seville Dept Comp Sci & Artificial Intelligence Seville Spain Chongqing Technol & Business Univ Chongqing Key Lab Mfg Equipment Mech Design & Con Chongqing Peoples R China Univ Los Andes CEMISID Merida Venezuela Univ Algarve CEOT Faro Portugal
Signals captured in rotating machines to obtain the status of their components can be considered as a source of massive information. In current methods based on artificial intelligence to fault severity assessment, fe... 详细信息
来源: 评论
Cluster Naturalistic Driving Encounters Using Deep Unsupervised Learning
Cluster Naturalistic Driving Encounters Using Deep Unsupervi...
收藏 引用
IEEE Intelligent Vehicles Symposium
作者: Sisi Li Wenshuo Wang Zhaobin Mo Ding Zhao Robotics Institute University of Michigan Ann Arbor MI Department of Mechanical Engineering University of Michigan Ann Arbor Automotive Engineering at the Tsinghua University Beijing China
Learning knowledge from driving encounters could help self-driving cars make appropriate decisions when driving in complex settings with nearby vehicles engaged. This paper develops an unsupervised classifier to group... 详细信息
来源: 评论