咨询与建议

限定检索结果

文献类型

  • 469 篇 期刊文献
  • 310 篇 会议
  • 4 篇 学位论文

馆藏范围

  • 783 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 729 篇 工学
    • 487 篇 计算机科学与技术...
    • 298 篇 电气工程
    • 129 篇 信息与通信工程
    • 97 篇 软件工程
    • 62 篇 控制科学与工程
    • 48 篇 仪器科学与技术
    • 30 篇 电子科学与技术(可...
    • 26 篇 机械工程
    • 26 篇 石油与天然气工程
    • 21 篇 生物医学工程(可授...
    • 14 篇 测绘科学与技术
    • 10 篇 交通运输工程
    • 9 篇 材料科学与工程(可...
    • 9 篇 动力工程及工程热...
    • 9 篇 环境科学与工程(可...
    • 9 篇 网络空间安全
    • 7 篇 光学工程
    • 6 篇 化学工程与技术
    • 5 篇 土木工程
  • 129 篇 理学
    • 51 篇 物理学
    • 38 篇 生物学
    • 29 篇 化学
    • 23 篇 数学
    • 10 篇 地球物理学
    • 5 篇 系统科学
  • 87 篇 医学
    • 62 篇 临床医学
    • 23 篇 基础医学(可授医学...
    • 14 篇 特种医学
  • 59 篇 管理学
    • 51 篇 管理科学与工程(可...
    • 8 篇 图书情报与档案管...
  • 5 篇 农学
  • 3 篇 法学
  • 2 篇 经济学
  • 2 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 783 篇 auto-encoder
  • 191 篇 deep learning
  • 49 篇 feature extracti...
  • 47 篇 anomaly detectio...
  • 43 篇 machine learning
  • 37 篇 unsupervised lea...
  • 25 篇 lstm
  • 25 篇 convolutional ne...
  • 21 篇 neural networks
  • 21 篇 classification
  • 19 篇 task analysis
  • 19 篇 deep neural netw...
  • 19 篇 convolutional ne...
  • 18 篇 neural network
  • 16 篇 training
  • 15 篇 fault diagnosis
  • 15 篇 cnn
  • 15 篇 extreme learning...
  • 14 篇 clustering
  • 14 篇 generative adver...

机构

  • 6 篇 fuzhou univ coll...
  • 5 篇 northeastern uni...
  • 5 篇 univ elect sci &...
  • 4 篇 jiangnan univ sc...
  • 4 篇 sichuan univ col...
  • 4 篇 yunnan univ sch ...
  • 4 篇 air force engn u...
  • 4 篇 northeastern uni...
  • 4 篇 southeast univ s...
  • 3 篇 china univ min &...
  • 3 篇 nanjing univ sta...
  • 3 篇 xidian univ sch ...
  • 3 篇 tianjin univ col...
  • 3 篇 jiangnan univ sc...
  • 3 篇 fudan univ acad ...
  • 3 篇 univ elect sci &...
  • 3 篇 north china elec...
  • 3 篇 univ sci & techn...
  • 3 篇 shanghai jiao to...
  • 3 篇 huazhong univ sc...

作者

  • 6 篇 wang shiping
  • 5 篇 liu yang
  • 5 篇 fu yun
  • 5 篇 zhou lihua
  • 4 篇 cai jinyu
  • 4 篇 li rui
  • 4 篇 zhang wanqing
  • 4 篇 wang xiaodan
  • 4 篇 li shuaichao
  • 4 篇 lei lei
  • 4 篇 guo wenzhong
  • 4 篇 cui ying
  • 3 篇 xie xijiong
  • 3 篇 fu r.
  • 3 篇 fayyazi hossein
  • 3 篇 zuo wenbo
  • 3 篇 li yanfeng
  • 3 篇 liu zhen
  • 3 篇 xu kai
  • 3 篇 wang li

语言

  • 758 篇 英文
  • 19 篇 其他
  • 4 篇 德文
  • 4 篇 中文
  • 3 篇 法文
  • 1 篇 意大利文
  • 1 篇 朝鲜文
检索条件"主题词=Auto-Encoder"
783 条 记 录,以下是71-80 订阅
排序:
auto-encoder Based Clustering Algorithms for Intuitionistic Fuzzy Sets  12
Auto-encoder Based Clustering Algorithms for Intuitionistic ...
收藏 引用
12th International Conference on Intelligent Systems and Knowledge Engineering (IEEE ISKE)
作者: Du, Yimin Wu, Guixing Tang, Guolin Univ Sci & Technol China Sch Software Engn Hefei Anhui Peoples R China Beijing Univ Technol Sch Econ & Management Beijing Peoples R China
Clustering plays an important role in data mining and machine learning. Then, intuitionistic fuzzy sets (IFSs) are flexible and practical in dealing with vagueness and uncertainty problems. To cluster the information ... 详细信息
来源: 评论
auto-encoder and LSTM-Based Credit Card Fraud Detection
收藏 引用
SN Computer Science 2023年 第5期4卷 1-8页
作者: Sehrawat, Deepthi Singh, Yudhvir UIET MDU Rohtak India Computer Science and Engineering UIET MDU Rohtak India
The increased fraud risk due to the most recent methods of paying with a credit card, such as real-time payments and cards with near-field communication (NFC) capabilities, makes detecting credit card fraud an essenti... 详细信息
来源: 评论
auto-encoder Based Model for High-Dimensional Imbalanced Industrial Data  28th
Auto-Encoder Based Model for High-Dimensional Imbalanced Ind...
收藏 引用
28th International Conference on Neural Information Processing
作者: Zhang, Chao Bom, Sthitie Seagate Technol Bloomington MN 55435 USA Univ Chicago Chicago IL 60637 USA
With the proliferation of IoT devices, the distributed control systems are now capturing and processing more sensors at higher frequency than ever before. These new data, due to their volume and novelty, cannot be eff... 详细信息
来源: 评论
A semi-supervised auto-encoder using label and sparse regularizations for classification
收藏 引用
APPLIED SOFT COMPUTING 2019年 77卷 205-217页
作者: Chai, Zhilei Song, Wei Wang, Huiling Liu, Fei Jiangnan Univ Sch IoT Engn Wuxi Peoples R China Minist Educ Engn Res Ctr Internet Things Appl Technol Beijing Peoples R China Jiangnan Univ Jiangsu Prov Engn Lab Pattern Recognit & Computat Wuxi Peoples R China Wuxi Taihu Univ Sch IoT Engn Wuxi Peoples R China
The semi-supervised auto-encoder (SSAE) is a promising deep-learning method that integrates the advantages of unsupervised and supervised learning processes. The former learning process is designed to extract the unde... 详细信息
来源: 评论
Estimation of gait normality index based on point clouds through deep auto-encoder
收藏 引用
EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING 2019年 第1期2019卷 1-13页
作者: Trong-Nguyen Nguyen Meunier, Jean Univ Montreal DIRO Pavillon Andre Aisenstadt2920 Chemin Tour Montreal PQ H3T 1J4 Canada
This paper proposes a method estimating an index that indicates human gait normality based on a sequence of 3D point clouds representing the walking motion of a subject. A cylinder-based histogram is extracted from ea... 详细信息
来源: 评论
Robust image Translation and Completion Based on Dual auto-encoder With Bidirectional Latent Space Regression
收藏 引用
IEEE ACCESS 2019年 7卷 58695-58703页
作者: Lee, Sukhan Ul Islam, Naeem Sungkyunkwan Univ Intelligent Syst Res Inst Dept Elect & Comp Engn Suwon 440746 South Korea
automated image translation and completion is a subject of keen interest due to their impact on image representation, interpretation, and enhancement. To date, a conditional or a dual adversarial framework with a conv... 详细信息
来源: 评论
Deep multi-kernel auto-encoder network for clustering brain functional connectivity data
收藏 引用
NEURAL NETWORKS 2021年 135卷 148-157页
作者: Lu, Hu Liu, Saixiong Wei, Hui Chen, Chao Geng, Xia Jiangsu Univ Sch Comp Sci & Commun Engn Zhenjiang 212013 Jiangsu Peoples R China Fudan Univ Sch Comp Sci Lab Cognit & Model Algorithm Shanghai 200433 Peoples R China
In this study, we propose a deep-learning network model called the deep multi-kernel auto-encoder clustering network (DMACN) for clustering functional connectivity data for brain diseases. This model is an end-to-end ... 详细信息
来源: 评论
A Specific and Selective Neural Response Representation With Decorrelating auto-encoder
收藏 引用
IEEE ACCESS 2019年 7卷 70011-70020页
作者: Zhou, Jie Chen, Qian Jiang, Hao Cai, Shiqing Shao, Genfu Kikuchi, Hisakazu Nanjing Univ Informat Sci & Technol Coll Elect & Informat Engn Nanjing 210044 Jiangsu Peoples R China Hangzhou Dianzi Univ Coll Commun Engn Hangzhou 310000 Zhejiang Peoples R China Niigata Univ Coll Elect & Elect Engn Niigata 9502181 Japan
Since the pioneering report with an unsupervised pre-training principle was published, deep architectures, as a simulation of primary cortexes, have been intensively studied and successfully utilized in solving some r... 详细信息
来源: 评论
QoS Prediction for Mobile Edge Service Recommendation With auto-encoder
收藏 引用
IEEE ACCESS 2019年 7卷 62312-62324页
作者: Yin, Yuyu Zhang, Weipeng Xu, Yueshen Zhang, He Mai, Zhida Yu, Lifeng Hangzhou Dianzi Univ Sch Comp Hangzhou 310018 Zhejiang Peoples R China Minist Educ Key Lab Complex Syst Modeling & Simulat Hangzhou 310018 Zhejiang Peoples R China Xidian Univ Sch Comp Sci & Technol Xian 710126 Shaanxi Peoples R China Soochow Univ Prov Key Lab Comp Informat Proc Technol Suzhou 215006 Peoples R China Xanten Guangdong Dev Co Ltd Foshan 528200 Peoples R China Hithink RoyalFlush Informat Network Co Ltd Hangzhou 310023 Zhejiang Peoples R China
In the mobile edge computing environment, there are a large number of mobile edge services which are the carriers of various mobile intelligent applications. So how to recommend the most suitable candidate from such a... 详细信息
来源: 评论
End-to-End Self-Driving Approach Independent of Irrelevant Roadside Objects With auto-encoder
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2022年 第1期23卷 641-650页
作者: Wang, Tinghan Luo, Yugong Liu, Jinxin Chen, Rui Li, Keqiang Tsinghua Univ Sch Vehicle & Mobil Beijing 100084 Peoples R China
On a highway, the frequency of occurrence of irrelevant features, such as trees, varies a lot in different scenes. A limitation of the deep conventional neural networks used in end-to-end self-driving systems is that ... 详细信息
来源: 评论