咨询与建议

限定检索结果

文献类型

  • 47 篇 期刊文献
  • 19 篇 会议

馆藏范围

  • 66 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 62 篇 工学
    • 28 篇 电气工程
    • 28 篇 计算机科学与技术...
    • 15 篇 测绘科学与技术
    • 13 篇 信息与通信工程
    • 6 篇 仪器科学与技术
    • 5 篇 控制科学与工程
    • 4 篇 环境科学与工程(可...
    • 4 篇 软件工程
    • 3 篇 机械工程
    • 3 篇 生物医学工程(可授...
    • 3 篇 网络空间安全
    • 2 篇 动力工程及工程热...
    • 2 篇 电子科学与技术(可...
    • 2 篇 石油与天然气工程
    • 1 篇 光学工程
    • 1 篇 交通运输工程
    • 1 篇 林业工程
    • 1 篇 安全科学与工程
  • 26 篇 理学
    • 15 篇 地球物理学
    • 6 篇 生物学
    • 4 篇 地理学
    • 3 篇 物理学
    • 2 篇 数学
    • 1 篇 化学
    • 1 篇 大气科学
    • 1 篇 统计学(可授理学、...
  • 19 篇 医学
    • 16 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 7 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 3 篇 农学
    • 1 篇 林学

主题

  • 66 篇 autoencoder netw...
  • 17 篇 deep learning
  • 9 篇 hyperspectral un...
  • 7 篇 feature extracti...
  • 7 篇 training
  • 6 篇 decoding
  • 5 篇 anomaly detectio...
  • 5 篇 hyperspectral im...
  • 4 篇 task analysis
  • 3 篇 quality assessme...
  • 3 篇 image reconstruc...
  • 2 篇 ai
  • 2 篇 neural networks
  • 2 篇 convolution
  • 2 篇 hyperspectral un...
  • 2 篇 unsupervised mac...
  • 2 篇 intrusion detect...
  • 2 篇 image denoising
  • 2 篇 machine learning
  • 2 篇 correlation

机构

  • 3 篇 northwestern pol...
  • 3 篇 nanjing univ sci...
  • 2 篇 aswan univ dept ...
  • 2 篇 indian inst tech...
  • 2 篇 beijing normal u...
  • 2 篇 minist ind & inf...
  • 2 篇 xidian univ sch ...
  • 1 篇 xidian univ sch ...
  • 1 篇 qingdao univ sci...
  • 1 篇 univ lubeck inst...
  • 1 篇 univ al qadisiya...
  • 1 篇 zhongtong bus ho...
  • 1 篇 beijing inst rem...
  • 1 篇 south china univ...
  • 1 篇 harbin inst tech...
  • 1 篇 univ sci & techn...
  • 1 篇 xidian univ key ...
  • 1 篇 tsinghua univ be...
  • 1 篇 chennai 602 105
  • 1 篇 hebei normal uni...

作者

  • 3 篇 rashwan hatem a.
  • 3 篇 khalid saif
  • 3 篇 liu hongyi
  • 3 篇 puig domenec
  • 3 篇 zhao min
  • 3 篇 chen jie
  • 3 篇 abdulwahab sadda...
  • 2 篇 zhao zhengang
  • 2 篇 yu xianchuan
  • 2 篇 zhang xiaohua
  • 2 篇 abdel-nasser moh...
  • 2 篇 rahardja susanto
  • 2 篇 singh sanasam ra...
  • 2 篇 nandi sukumar
  • 2 篇 jiao licheng
  • 2 篇 wang hao
  • 2 篇 meng hongyun
  • 2 篇 yu bin
  • 2 篇 ratti ritesh
  • 2 篇 zhang jun

语言

  • 64 篇 英文
  • 1 篇 其他
检索条件"主题词=AutoEncoder Network"
66 条 记 录,以下是1-10 订阅
排序:
Real-Time Pattern Synthesis for Large-Scale Phased Arrays Based on autoencoder network and Knowledge Distillation
收藏 引用
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 2025年 第3期73卷 1471-1481页
作者: Zhang, Jiapeng Qu, Chang Zhang, Xingliang Li, Hui Dalian Univ Technol Sch Informat & Commun Engn Dalian 116024 Peoples R China
In this article, a deep learning (DL) method based on autoencoder network is proposed to achieve the inverse design of phase retrieval for large-scale antenna arrays. The inverse problem between the beam pattern and a... 详细信息
来源: 评论
Intelligent vehicle driving decision-making model based on variational autoencoder network and deep reinforcement learning
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 268卷
作者: Wang, Shufeng Wang, Zhengli Wang, Xinkai Liang, Qingwei Meng, Lingyi Shandong Univ Sci & Technol 579 Qianwangang Rd Qingdao 266590 Shandong Peoples R China Zhongtong Bus Holding Co Ltd 261 Huanghe RdEcon Dev Zone Liaocheng 252000 Shandong Peoples R China
In this paper, an end-to-end driving decision-making model is proposed for intelligent vehicle, utilizing a Variational autoencoder (VAE) network and Deep Reinforcement Learning to address the challenges in complex an... 详细信息
来源: 评论
Signal Enhancement for Downhole Microseismic Data Using Improved Attention Mechanism Based on autoencoder network
收藏 引用
IEEE ACCESS 2024年 12卷 156390-156400页
作者: Ge, Wenxuan Mao, Qinghui Zhou, Wei Gui, Zhixian Wang, Peng Yangtze Univ Key Lab Explorat Technol Oil & Gas Resources Minist Educ Wuhan 430100 Peoples R China Yangtze Univ Cooperat Innovat Ctr Unconvent Oil & Gas Minist Educ & Hubei Prov Wuhan 430100 Peoples R China Guangdong Ocean Univ Sch Comp Sci & Engn Yangjiang 529500 Peoples R China
During the downhole microseismic monitoring for hydraulic fracturing, microseismic signals are constantly vulnerable to interference from different kinds of noise. Improving the signal-to-noise ratio of microseismic r... 详细信息
来源: 评论
Electricity Behavior Modeling and Anomaly Detection Services Based on a Deep Variational autoencoder network
收藏 引用
ENERGIES 2024年 第16期17卷 3904页
作者: Lin, Rongheng Chen, Shuo He, Zheyu Wu, Budan Zou, Hua Zhao, Xin Li, Qiushuang Beijing Univ Posts & Telecommun Sch Comp Sci Natl Pilot Software Engn Sch State Key Lab Networking & Switching Technol Beijing 100876 Peoples R China State Grid Shandong Elect Power Co Econ & Res Inst Jinan 250021 Peoples R China
Understanding electrical load profiles and detecting anomaly behaviors are important to the smart grid system. However, current load identification and anomaly analysis are based on static analysis, and less considera... 详细信息
来源: 评论
Sensor Spoofing Detection On Autonomous Vehicle Using Channel-spatial-temporal Attention Based autoencoder network
收藏 引用
MOBILE networkS & APPLICATIONS 2024年 第6期29卷 1839-1852页
作者: Zhou, Man Han, Lansheng Hangzhou Normal Univ Key Lab Cryptog Zhejiang Prov Hangzhou Peoples R China Hangzhou Normal Univ Sch Math Hangzhou 311121 Peoples R China Huazhong Univ Sci & Technol Sch Cyber Sci & Engn Wuhan 430074 Peoples R China
Autonomous vehicles heavily rely on various sensors to evaluate their surroundings and issue essential control commands. Nonetheless, these sensors are susceptible to false data injection and spoofing attacks, posing ... 详细信息
来源: 评论
A multistage graph-based autoencoder network with global-local features for hyperspectral unmixing
收藏 引用
INTERNATIONAL JOURNAL OF REMOTE SENSING 2025年 第10期46卷 3709-3735页
作者: Dong, Hua Zhang, Xiaohua Meng, Hongyun Jiao, Licheng Xidian Univ Sch Artificial Intelligence Minist Educ Key Lab Intelligent Percept & Image Understanding Xian 710126 Shaanxi Peoples R China Xidian Univ Sch Math & Stat Xian Shaanxi Peoples R China
Hyperspectral unmixing using deep learning has received increasing attention as a technique for estimating endmember spectra and fractional abundances of land covers. Among these, autoencoder-based methods are the mos... 详细信息
来源: 评论
Hyperspectral Unmixing with autoencoder network in Wavelet Domain
Hyperspectral Unmixing with AutoEncoder Network in Wavelet D...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Zhan, Chenyang Liu, Hongyi Zhang, Jun Nanjing Univ Sci & Technol Sch Math & Stat Nanjing 210094 Peoples R China
Hyperspectral unmixing is an important task in hyperspectral applications. Its essence is to estimate the spectra (endmembers) and corresponding proportion (abundances) of pure substances. In this paper, we propose a ... 详细信息
来源: 评论
LSTM-DNN Based autoencoder network for Nonlinear Hyperspectral Image Unmixing
收藏 引用
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 2021年 第2期15卷 295-309页
作者: Zhao, Min Yan, Longbin Chen, Jie Northwestern Polytech Univ Sch Marine Sci & Technol Xian 710072 Peoples R China Minist Ind & Informat Technol Key Lab Ocean Acoust & Sensing Xian 710072 Shaanxi Peoples R China
Blind hyperspectral unmixing is an important technique in hyperspectral image analysis, aiming at estimating endmembers and their respective fractional abundances. Consider the limitations of using the linear model, n... 详细信息
来源: 评论
Hyperspectral Unmixing for Additive Nonlinear Models With a 3-D-CNN autoencoder network
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2022年 60卷 1页
作者: Zhao, Min Wang, Mou Chen, Jie Rahardja, Susanto Northwestern Polytech Univ Sch Marine Sci & Technol Xian 710072 Peoples R China
Spectral unmixing is an important task in hyperspectral image processing for separating the mixed spectral data pertaining to various materials observed aiming at analyzing the material components in observed pixels. ... 详细信息
来源: 评论
SPARSITY CONSTRAINED CONVOLUTIONAL autoencoder network FOR HYPERSPECTRAL IMAGE UNMIXING
SPARSITY CONSTRAINED CONVOLUTIONAL AUTOENCODER NETWORK FOR H...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Zhao, Zhengang Wang, Hao Liang, Yuchen Huang, Tao Xiao, Yi Yu, Xianchuan Beijing Normal Univ Sch Artificial Intelligence Beijing 100875 Peoples R China Hebei Normal Univ Business Coll Shijiazhuang 050024 Hebei Peoples R China
Hyperspectral images (HSIs) contain a large number of mixed pixels due to low spatial resolution, which poses great challenges to the analyses and applications of HSIs. In recent years, convolutional neural networks (... 详细信息
来源: 评论