咨询与建议

限定检索结果

文献类型

  • 2,596 篇 期刊文献
  • 1,662 篇 会议
  • 37 篇 学位论文
  • 2 册 图书
  • 1 篇 资讯

馆藏范围

  • 4,298 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,953 篇 工学
    • 2,467 篇 计算机科学与技术...
    • 1,595 篇 电气工程
    • 698 篇 信息与通信工程
    • 426 篇 控制科学与工程
    • 385 篇 软件工程
    • 272 篇 仪器科学与技术
    • 166 篇 机械工程
    • 165 篇 生物医学工程(可授...
    • 153 篇 测绘科学与技术
    • 150 篇 电子科学与技术(可...
    • 99 篇 石油与天然气工程
    • 81 篇 环境科学与工程(可...
    • 78 篇 交通运输工程
    • 74 篇 动力工程及工程热...
    • 70 篇 材料科学与工程(可...
    • 64 篇 土木工程
    • 63 篇 网络空间安全
    • 58 篇 化学工程与技术
    • 41 篇 生物工程
    • 40 篇 安全科学与工程
  • 874 篇 理学
    • 287 篇 物理学
    • 247 篇 生物学
    • 156 篇 化学
    • 139 篇 地球物理学
    • 132 篇 数学
  • 552 篇 医学
    • 342 篇 临床医学
    • 126 篇 基础医学(可授医学...
    • 84 篇 特种医学
  • 382 篇 管理学
    • 326 篇 管理科学与工程(可...
  • 75 篇 农学
  • 22 篇 经济学
  • 22 篇 法学
  • 16 篇 文学
  • 14 篇 艺术学
  • 12 篇 教育学
  • 3 篇 哲学
  • 2 篇 军事学

主题

  • 4,298 篇 autoencoder
  • 1,046 篇 deep learning
  • 431 篇 anomaly detectio...
  • 369 篇 machine learning
  • 241 篇 feature extracti...
  • 155 篇 convolutional ne...
  • 152 篇 neural network
  • 151 篇 unsupervised lea...
  • 130 篇 neural networks
  • 109 篇 training
  • 108 篇 lstm
  • 106 篇 classification
  • 105 篇 dimensionality r...
  • 82 篇 cnn
  • 80 篇 clustering
  • 79 篇 representation l...
  • 79 篇 decoding
  • 77 篇 transfer learnin...
  • 77 篇 deep neural netw...
  • 68 篇 convolutional ne...

机构

  • 17 篇 univ chinese aca...
  • 10 篇 cent south univ ...
  • 10 篇 univ elect sci &...
  • 9 篇 chongqing univ c...
  • 9 篇 univ chinese aca...
  • 9 篇 northwestern pol...
  • 9 篇 iiit delhi new d...
  • 9 篇 nanyang technol ...
  • 8 篇 hong kong polyte...
  • 8 篇 cent south univ ...
  • 8 篇 tianjin univ col...
  • 8 篇 univ elect sci &...
  • 8 篇 korea adv inst s...
  • 8 篇 peng cheng lab p...
  • 7 篇 china univ geosc...
  • 7 篇 chinese acad sci...
  • 7 篇 harbin engn univ...
  • 6 篇 queens univ dept...
  • 6 篇 new jersey inst ...
  • 6 篇 tsinghua univ de...

作者

  • 20 篇 majumdar angshul
  • 13 篇 wang wei
  • 8 篇 zhang wei
  • 7 篇 zhang lin
  • 7 篇 zhang lei
  • 7 篇 wang jian
  • 7 篇 wang hao
  • 7 篇 liu li
  • 7 篇 li bin
  • 7 篇 zhang kai
  • 7 篇 kim jin-young
  • 7 篇 hoydis jakob
  • 7 篇 zhang hao
  • 7 篇 chen wei
  • 7 篇 cho sung-bae
  • 7 篇 gao lianru
  • 7 篇 guo lei
  • 6 篇 wang lei
  • 6 篇 li li
  • 6 篇 wang kai

语言

  • 4,086 篇 英文
  • 163 篇 其他
  • 34 篇 中文
  • 6 篇 土耳其文
  • 4 篇 法文
  • 2 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 日文
  • 1 篇 葡萄牙文
检索条件"主题词=Autoencoder"
4298 条 记 录,以下是3851-3860 订阅
Transfer Learning using Representation Learning in Massive Open Online Courses  19
Transfer Learning using Representation Learning in Massive O...
收藏 引用
9th International Conference on Learning Analytics and Knowledge (LAK)
作者: Ding, Mucong Wang, Yanbang Hemberg, Erik O'Reilly, Una-May Hong Kong Univ Sci & Technol Dept Comp Sci & Engn Hong Kong Peoples R China MIT Comp Sci & Artificial Intelligence Lab 77 Massachusetts Ave Cambridge MA 02139 USA
In a Massive Open Online Course (MOOC), predictive models of student behavior can support multiple aspects of learning, including instructor feedback and timely intervention. Ongoing courses, when the student outcomes... 详细信息
来源: 评论
Deep Learning Based Topics Detection  3
Deep Learning Based Topics Detection
收藏 引用
3rd International Conference on Intelligent Computing in Data Sciences (ICDS)
作者: Bougteb, Yahya Ouhbi, Brahim Frikh, Bouchra Zemmouri, El Moukhtar Moulay Ismail Univ LM2I Lab ENSAM Meknes BP 15290 El Mansour Meknes Morocco Sidi Mohamed Ben Abdellah Univ LTTI Lab EST Fes BP 1796 Atlas Fes Morocco
Detecting topics from textual data streams is an interesting task in social networks studies. Traditional techniques have certain limitations when processing social network data such as tweets and online conversations... 详细信息
来源: 评论
A NOVEL CT-BASED DESCRIPTORS FOR PRECISE DIAGNOSIS OF PULMONARY NODULES  26
A NOVEL CT-BASED DESCRIPTORS FOR PRECISE DIAGNOSIS OF PULMON...
收藏 引用
26th IEEE International Conference on Image Processing (ICIP)
作者: Shaffie, Ahmed Soliman, Ahmed Abu Khalifeh, Hadil Taher, Fatma Ghazal, Mohammed Dunlap, Neal Elmaghraby, Adel Keynton, Robert El-Baz, Ayman Univ Louisville Bioengn Dept BioImaging Lab Louisville KY 40292 USA Abu Dhabi Univ Chem Engn Dept Abu Dhabi U Arab Emirates Zayed Univ Coll Technol Innovat Dubai U Arab Emirates Abu Dhabi Univ Dept Elect & Comp Engn Abu Dhabi U Arab Emirates Univ Louisville Dept Radiat Oncol Louisville KY 40292 USA Univ Louisville Comp Engn & Comp Sci Dept Louisville KY 40292 USA
Early diagnosis of pulmonary nodules is critical for lung cancer clinical management. In this paper, a novel framework for pulmonary nodule diagnosis, using descriptors extracted from single computed tomography (CT) s... 详细信息
来源: 评论
Design and Performance Analysis of Docker-Based Smart Manufacturing Platform Based on Deep Learning Model  19th
Design and Performance Analysis of Docker-Based Smart Manufa...
收藏 引用
19th International Conference on Computational Science and Its Applications (ICCSA)
作者: Hwang, Soonsung Lee, Jaehyoung Kim, Dongyeon Jeong, Jongpil Sungkyunkwan Univ Dept Smart Factory Convergence Suwon 16419 Gyeonggi Do South Korea
Breakdown of equipment causes very large damage to the factory. Research is continuously being conducted to prevent break down of equipment by detecting abnormal signs before equipment failure. This paper proposes an ... 详细信息
来源: 评论
Deep Architectures for Joint Clustering and Visualization with Self-organizing Maps  23rd
Deep Architectures for Joint Clustering and Visualization wi...
收藏 引用
23rd Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)
作者: Forest, Florent Lebbah, Mustapha Azzag, Hanane Lacaille, Jerome Univ Paris 13 Lab Informat Paris Nord LIPN F-93430 Villetaneuse France Safran Aircraft Engines F-77550 Moissy Cramayel France
Recent research has demonstrated how deep neural networks are able to learn representations to improve data clustering. By considering representation learning and clustering as a joint task, models learn clustering-fr... 详细信息
来源: 评论
The application of unsupervised deep learning in predictive models using electronic health records
收藏 引用
BMC MEDICAL RESEARCH METHODOLOGY 2020年 第1期20卷 37-37页
作者: Wang, Lei Tong, Liping Davis, Darcy Arnold, Tim Esposito, Tina Renmin Univ China Sch Stat 59 Zhong Guan Cun Ave Beijing Peoples R China Univ Illinois Dept Math Stat & Comp Sci 851 S Morgan St Chicago IL 60607 USA Advocate Aurora Hlth 3075 Highland Pkwy Downers Grove IL 60515 USA Cerner Corp 2800 Rockcreek Pkwy North Kansas City MO 64117 USA
Background The main goal of this study is to explore the use of features representing patient-level electronic health record (EHR) data, generated by the unsupervised deep learning algorithm autoencoder, in predictive... 详细信息
来源: 评论
Super Long Interval Time-Lapse Image Generation for Proactive Preservation of Cultural Heritage Using Crowdsourcing
Super Long Interval Time-Lapse Image Generation for Proactiv...
收藏 引用
IEEE International Conference on Big Data (Big Data)
作者: Shishido, Hidehiko Kim, Hansung Kitahara, Itaru Univ Tsukuba Tsukuba Ibaraki Japan Univ Surrey Guildford Surrey England
To establish advanced analytical methods for preserving cultural heritage, this research proposes a method to generate a time-lapse image with a super-long temporal interval. The key issue is to realize an image colle... 详细信息
来源: 评论
Deep Learning with Periodic Features and Applications in Particle Physics  3rd
Deep Learning with Periodic Features and Applications in Par...
收藏 引用
Research School in Statistics and Data Science (RSSDS)
作者: Maeland, Steffen Strumke, Inga NORSAR Gunnar Randers Vei 15 N-2007 Kjeller Norway PricewaterhouseCoopers Dronning Eufemias Gate 71 N-0194 Oslo Norway
We introduce a periodic loss function and corresponding activation function, to be used for neural network regression and autoencoding task involving periodic targets. Such target features, typically represented in no... 详细信息
来源: 评论
Cross Conditional Network for Speech Enhancement
Cross Conditional Network for Speech Enhancement
收藏 引用
International Symposium on Intelligent Signal Processing and Communication Systems (lSPACS)
作者: Tanaka, Haruki Sugiura, Yosuke Yasui, Nozomiko Shimamura, Tetsuya Miyazaki, Ryoichi Natl Inst Technol Tokuyama Coll Yamaguchi Japan Saitama Univ Saitama Japan
In the signal processing field, there is a growing interest in speech enhancement. Recently, a lot of speech enhancement methods based on the deep neural network have been proposed. Mostly, these networks, such as SEG... 详细信息
来源: 评论
INVESTIGATING DOMAIN SENSITIVITY OF DNN EMBEDDINGS FOR SPEAKER RECOGNITION SYSTEMS  44
INVESTIGATING DOMAIN SENSITIVITY OF DNN EMBEDDINGS FOR SPEAK...
收藏 引用
44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Rahman, Md Hafizur Himawan, Ivan Sridharan, Sridha Fookes, Clinton Queensland Univ Technol SAIVT Speech & Audio Res Lab Brisbane Qld Australia
A speaker embeddings framework achieves state-of-the-art speaker recognition performance by modeling speaker discriminant information directly using deep neural networks ( DNNs). After the introduction of neural netwo... 详细信息
来源: 评论