咨询与建议

限定检索结果

文献类型

  • 2,573 篇 期刊文献
  • 1,652 篇 会议
  • 51 篇 学位论文
  • 2 册 图书
  • 1 篇 资讯

馆藏范围

  • 4,279 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,923 篇 工学
    • 2,443 篇 计算机科学与技术...
    • 1,582 篇 电气工程
    • 689 篇 信息与通信工程
    • 414 篇 控制科学与工程
    • 378 篇 软件工程
    • 265 篇 仪器科学与技术
    • 168 篇 生物医学工程(可授...
    • 163 篇 机械工程
    • 152 篇 测绘科学与技术
    • 141 篇 电子科学与技术(可...
    • 93 篇 石油与天然气工程
    • 76 篇 环境科学与工程(可...
    • 73 篇 动力工程及工程热...
    • 70 篇 材料科学与工程(可...
    • 69 篇 交通运输工程
    • 64 篇 土木工程
    • 59 篇 化学工程与技术
    • 58 篇 网络空间安全
    • 44 篇 生物工程
    • 35 篇 力学(可授工学、理...
  • 865 篇 理学
    • 291 篇 物理学
    • 246 篇 生物学
    • 151 篇 化学
    • 137 篇 地球物理学
    • 126 篇 数学
  • 546 篇 医学
    • 345 篇 临床医学
    • 123 篇 基础医学(可授医学...
    • 86 篇 特种医学
  • 366 篇 管理学
    • 310 篇 管理科学与工程(可...
    • 36 篇 图书情报与档案管...
  • 74 篇 农学
  • 21 篇 经济学
  • 19 篇 法学
  • 14 篇 艺术学
  • 13 篇 文学
  • 12 篇 教育学
  • 3 篇 哲学
  • 1 篇 军事学

主题

  • 4,279 篇 autoencoder
  • 1,042 篇 deep learning
  • 432 篇 anomaly detectio...
  • 366 篇 machine learning
  • 239 篇 feature extracti...
  • 154 篇 convolutional ne...
  • 153 篇 neural network
  • 153 篇 unsupervised lea...
  • 129 篇 neural networks
  • 109 篇 training
  • 108 篇 lstm
  • 106 篇 classification
  • 103 篇 dimensionality r...
  • 82 篇 cnn
  • 79 篇 representation l...
  • 79 篇 clustering
  • 78 篇 decoding
  • 77 篇 transfer learnin...
  • 77 篇 deep neural netw...
  • 68 篇 convolutional ne...

机构

  • 16 篇 univ chinese aca...
  • 10 篇 cent south univ ...
  • 10 篇 univ elect sci &...
  • 9 篇 chongqing univ c...
  • 9 篇 univ chinese aca...
  • 9 篇 northwestern pol...
  • 9 篇 iiit delhi new d...
  • 9 篇 nanyang technol ...
  • 8 篇 hong kong polyte...
  • 8 篇 cent south univ ...
  • 8 篇 tianjin univ col...
  • 8 篇 univ elect sci &...
  • 8 篇 korea adv inst s...
  • 8 篇 peng cheng lab p...
  • 7 篇 china univ geosc...
  • 7 篇 chinese acad sci...
  • 7 篇 harbin engn univ...
  • 7 篇 brno university ...
  • 6 篇 queens univ dept...
  • 6 篇 new jersey inst ...

作者

  • 20 篇 majumdar angshul
  • 13 篇 wang wei
  • 7 篇 zhang lin
  • 7 篇 zhang lei
  • 7 篇 wang jian
  • 7 篇 wang hao
  • 7 篇 liu li
  • 7 篇 li bin
  • 7 篇 kim jin-young
  • 7 篇 hoydis jakob
  • 7 篇 chen wei
  • 7 篇 cho sung-bae
  • 7 篇 gao lianru
  • 7 篇 zhang wei
  • 7 篇 guo lei
  • 6 篇 wang lei
  • 6 篇 li li
  • 6 篇 wang kai
  • 6 篇 li yuan
  • 6 篇 liu jie

语言

  • 4,103 篇 英文
  • 113 篇 其他
  • 34 篇 中文
  • 6 篇 土耳其文
  • 5 篇 法文
  • 4 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 意大利文
  • 1 篇 日文
  • 1 篇 葡萄牙文
检索条件"主题词=Autoencoder"
4279 条 记 录,以下是3871-3880 订阅
排序:
Multi-Document Extractive Text Summarization via Deep Learning Approach  5
Multi-Document Extractive Text Summarization via Deep Learni...
收藏 引用
IEEE 5th Conference on Knowledge Based Engineering and Innovation (KBEI)
作者: Rezaei, Afsaneh Dami, Sina Daneshjoo, Parisa Islamic Azad Univ West Tehran Branch Dept Comp Engn Tehran Iran
Today, given the huge amount of information, summarization has become one of the most applicable topics in data mining that can help users gain access to useful data over a short period of time. In this study, two mul... 详细信息
来源: 评论
Deep Learning Based Dosimetry Evaluation at Organs-at-Risk in Esophageal Radiation Treatment Planning  41
Deep Learning Based Dosimetry Evaluation at Organs-at-Risk i...
收藏 引用
41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Jiang, Dashan Li, Teng Mao, Ronghu Du, Chi Liu, Jianfei Anhui Univ Elect Engn & Automat Hefei Peoples R China Zhengzhou Univ Henan Canc Hosp Dept Radiat Oncol Affiliated Canc Hosp Zhengzhou Henan Peoples R China Second Peoples Hosp Neijiang Canc Ctr Neijiang 641000 Sichuan Peoples R China
Rapid esophageal radiation treatment planning is often obstructed by manually adjusting optimization parameters. The adjustment process is commonly guided by the dose-volume histogram (DVH), which evaluates dosimetry ... 详细信息
来源: 评论
Deep Learning-based Method for Classifying and Localizing Potato Blemishes  8th
Deep Learning-based Method for Classifying and Localizing Po...
收藏 引用
8th International Conference on Pattern Recognition Applications and Methods (ICPRAM)
作者: Marino, Sofia Beauseroy, Pierre Smolarz, Andre Univ Technol Troyes Inst Charles Delaunay M2S FRE 2019 Troyes France
In this paper we address the problem of potato blemish classification and localization. A large database with multiple varieties was created containing 6 classes, i.e., healthy, damaged, greening, black dot, common sc... 详细信息
来源: 评论
Homogenization of Breast MRI across Imaging Centers and Feature Analysis using Unsupervised Deep Embedding
Homogenization of Breast MRI across Imaging Centers and Feat...
收藏 引用
Conference on Medical Imaging - Computer-Aided Diagnosis
作者: Samala, Ravi K. Chan, Heang-Ping Hadjiiski, Lubomir Paramagul, Chintana Helvie, Mark A. Neal, Colleen H. Univ Michigan Dept Radiol Ann Arbor MI 48109 USA
We propose an intensity-based technique to homogenize dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data acquired at six institutions. A total of 234 T1-weighted MRI volumes acquired at the peak kinet... 详细信息
来源: 评论
A Closer Look at Disentangling in β-VAE  53
A Closer Look at Disentangling in β-VAE
收藏 引用
53rd Asilomar Conference on Signals, Systems, and Computers (ACSSC)
作者: Sikka, Harshvardhan Zhong, Weishun Yin, Jun Pehlevan, Cengiz Harvard Univ Sch Engn & Appl Sci Cambridge MA 02138 USA MIT Dept Phys Cambridge MA 02139 USA Harvard Univ Ctr Brain Sci Cambridge MA 02138 USA Harvard Univ Dept Phys Cambridge MA 02138 USA
In many data analysis tasks, it is beneficial to learn representations where each dimension is statistically independent and thus disentangled from the others. If data generating factors are also statistically indepen... 详细信息
来源: 评论
EE-AE: AN EXCLUSIVITY ENHANCED UNSUPERVISED FEATURE LEARNING APPROACH  44
EE-AE: AN EXCLUSIVITY ENHANCED UNSUPERVISED FEATURE LEARNING...
收藏 引用
44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Guo, Jingcai Guo, Song Hong Kong Polytech Univ Dept Comp Hong Kong Peoples R China
Unsupervised learning is becoming more and more important recently. As one of its key components, the autoencoder (AE) aims to learn a latent feature representation of data which is more robust and discriminative. How... 详细信息
来源: 评论
Rethinking Planar Homography Estimation Using Perspective Fields  14th
Rethinking Planar Homography Estimation Using Perspective Fi...
收藏 引用
14th Asian Conference on Computer Vision (ACCV)
作者: Zeng, Rui Denman, Simon Sridharan, Sridha Fookes, Clinton Queensland Univ Technol Brisbane Qld Australia
Planar homography estimation refers to the problem of computing a bijective linear mapping of pixels between two images. While this problem has been studied with convolutional neural networks (CNNs), existing methods ... 详细信息
来源: 评论
Combining feature selection, feature learning and ensemble learning for software fault prediction  11
Combining feature selection, feature learning and ensemble l...
收藏 引用
11th International Conference on Knowledge and Systems Engineering (KSE)
作者: Hung Duy Tran Le Thi My Hanh Nguyen Thanh Binh Univ Danang Dept Informat Technol Univ Sci & Technol Danang Vietnam
This paper studies a combination of feature selection and ensemble learning to address the feature redundancy and class imbalance problems in software fault prediction. Also, a deep learning model is used to generate ... 详细信息
来源: 评论
A Comparison of CasPer Against Other ML Techniques for Stress Recognition  26th
A Comparison of CasPer Against Other ML Techniques for Stres...
收藏 引用
26th International Conference on Neural Information Processing (ICONIP) of the Asia-Pacific-Neural-Network-Society (APNNS)
作者: Sekoranja, Jack Michael Harding Australian Natl Univ Canberra ACT Australia
When developing multi-layer neural networks (MLNNs), determining an appropriate size can be computationally intensive. Cascade Correlation algorithms such as CasPer attempt to address this, however, associated researc... 详细信息
来源: 评论
Structural Role Enhanced Attributed Network Embedding  20th
Structural Role Enhanced Attributed Network Embedding
收藏 引用
20th International Conference on Web Information Systems Engineering (WISE)
作者: Li, Zhao Wang, Xin Li, Jianxin Zhang, Qingpeng Tianjin Univ Coll Intelligence & Comp Tianjin Peoples R China Tianjin Key Lab Cognit Comp & Applicat Tianjin Peoples R China Deakin Univ Sch Informat Technol Melbourne Vic Australia City Univ Hong Kong Sch Data Sci Hong Kong Peoples R China
In recent years, network embedding methods based on deep learning to process network structure data have attracted widespread attention. It aims to represent nodes in the network as low-dimensional dense real-value ve... 详细信息
来源: 评论