咨询与建议

限定检索结果

文献类型

  • 2,596 篇 期刊文献
  • 1,662 篇 会议
  • 37 篇 学位论文
  • 2 册 图书
  • 1 篇 资讯

馆藏范围

  • 4,298 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,953 篇 工学
    • 2,467 篇 计算机科学与技术...
    • 1,595 篇 电气工程
    • 698 篇 信息与通信工程
    • 426 篇 控制科学与工程
    • 385 篇 软件工程
    • 272 篇 仪器科学与技术
    • 166 篇 机械工程
    • 165 篇 生物医学工程(可授...
    • 153 篇 测绘科学与技术
    • 150 篇 电子科学与技术(可...
    • 99 篇 石油与天然气工程
    • 81 篇 环境科学与工程(可...
    • 78 篇 交通运输工程
    • 74 篇 动力工程及工程热...
    • 70 篇 材料科学与工程(可...
    • 64 篇 土木工程
    • 63 篇 网络空间安全
    • 58 篇 化学工程与技术
    • 41 篇 生物工程
    • 40 篇 安全科学与工程
  • 874 篇 理学
    • 287 篇 物理学
    • 247 篇 生物学
    • 156 篇 化学
    • 139 篇 地球物理学
    • 132 篇 数学
  • 552 篇 医学
    • 342 篇 临床医学
    • 126 篇 基础医学(可授医学...
    • 84 篇 特种医学
  • 382 篇 管理学
    • 326 篇 管理科学与工程(可...
  • 75 篇 农学
  • 22 篇 经济学
  • 22 篇 法学
  • 16 篇 文学
  • 14 篇 艺术学
  • 12 篇 教育学
  • 3 篇 哲学
  • 2 篇 军事学

主题

  • 4,298 篇 autoencoder
  • 1,046 篇 deep learning
  • 431 篇 anomaly detectio...
  • 369 篇 machine learning
  • 241 篇 feature extracti...
  • 155 篇 convolutional ne...
  • 152 篇 neural network
  • 151 篇 unsupervised lea...
  • 130 篇 neural networks
  • 109 篇 training
  • 108 篇 lstm
  • 106 篇 classification
  • 105 篇 dimensionality r...
  • 82 篇 cnn
  • 80 篇 clustering
  • 79 篇 representation l...
  • 79 篇 decoding
  • 77 篇 transfer learnin...
  • 77 篇 deep neural netw...
  • 68 篇 convolutional ne...

机构

  • 17 篇 univ chinese aca...
  • 10 篇 cent south univ ...
  • 10 篇 univ elect sci &...
  • 9 篇 chongqing univ c...
  • 9 篇 univ chinese aca...
  • 9 篇 northwestern pol...
  • 9 篇 iiit delhi new d...
  • 9 篇 nanyang technol ...
  • 8 篇 hong kong polyte...
  • 8 篇 cent south univ ...
  • 8 篇 tianjin univ col...
  • 8 篇 univ elect sci &...
  • 8 篇 korea adv inst s...
  • 8 篇 peng cheng lab p...
  • 7 篇 china univ geosc...
  • 7 篇 chinese acad sci...
  • 7 篇 harbin engn univ...
  • 6 篇 queens univ dept...
  • 6 篇 new jersey inst ...
  • 6 篇 tsinghua univ de...

作者

  • 20 篇 majumdar angshul
  • 13 篇 wang wei
  • 8 篇 zhang wei
  • 7 篇 zhang lin
  • 7 篇 zhang lei
  • 7 篇 wang jian
  • 7 篇 wang hao
  • 7 篇 liu li
  • 7 篇 li bin
  • 7 篇 zhang kai
  • 7 篇 kim jin-young
  • 7 篇 hoydis jakob
  • 7 篇 zhang hao
  • 7 篇 chen wei
  • 7 篇 cho sung-bae
  • 7 篇 gao lianru
  • 7 篇 guo lei
  • 6 篇 wang lei
  • 6 篇 li li
  • 6 篇 wang kai

语言

  • 4,086 篇 英文
  • 163 篇 其他
  • 34 篇 中文
  • 6 篇 土耳其文
  • 4 篇 法文
  • 2 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 日文
  • 1 篇 葡萄牙文
检索条件"主题词=Autoencoder"
4298 条 记 录,以下是3891-3900 订阅
Toward End-to-end Prediction of Future Wellbeing using Deep Sensor Representation Learning  8
Toward End-to-end Prediction of Future Wellbeing using Deep ...
收藏 引用
8th International Conference on Affective Computing and Intelligent Interaction (ACII)
作者: Li, Boning Yu, Han Sano, Akane Rice Univ Dept Elect & Comp Engn POB 1892 Houston TX 77251 USA
Wearable sensors can capture continuous, high resolution physiological and behavioral data that can be utilized to develop early health and wellbeing detection and lead to early warning, intervention, and recommendati... 详细信息
来源: 评论
A Deep Learning Approach for Network Intrusion Detection Based on NSL-KDD Dataset  13
A Deep Learning Approach for Network Intrusion Detection Bas...
收藏 引用
13th IEEE International Conference on Anti-Counterfeiting, Security, and Identification (ASID)
作者: Zhang, Chongzhen Ruan, Fangming Yin, Lan Chen, Xi Zhai, Lidong Liu, Feng Guizhou Normal Univ Sch Big Data & Comp Sci Guiyang Peoples R China
Along with the high-speed growth of Internet, cyber-attack is becoming more and more frequent, so the detection of network intrusions is particularly important for keeping network in normal work. In modern big data en... 详细信息
来源: 评论
Novel techniques for classification of lung nodules using deep learning approach
收藏 引用
Open Biomedical Engineering Journal 2019年 13卷 120-126页
作者: Bhavanishankar, K. Sudhamani, M.V. Department of Computer Science and Engineering RNS Institute of Technology Bengaluru India
Objective: Lung cancer is proving to be one of the deadliest diseases that is haunting mankind in recent years. Timely detection of the lung nodules would surely enhance the survival rate. This paper focusses on the c... 详细信息
来源: 评论
Radar HRRP Target Recognition Based on Blind-Denoising Deep Network
Radar HRRP Target Recognition Based on Blind-Denoising Deep ...
收藏 引用
IEEE Global Communications Conference (IEEE GLOBECOM)
作者: Zhao, Chenkai Liang, Jing Zhang, Ge Huang, Changba He, Xudong Univ Elect Sci & Technol China Chengdu Peoples R China
Feature representation based on the high resolution range profile(HRRP) is important in radar automatic target recognition(RATR). Traditional algorithms of feature extraction utilize hallow architectures and rarely ad... 详细信息
来源: 评论
Machine learning algorithms for improving the dose rate measurement in handheld homeland security instrumentation
Machine learning algorithms for improving the dose rate meas...
收藏 引用
IEEE Nuclear Science Symposium / Medical Imaging Conference (NSS/MIC)
作者: Neuer, Marcus J. Teofilov, Nikolai Schykowski, Wolf Henke, Christian Jacobs, Elmar InnoRIID GmbH Merowinger Pl 1 D-40225 Dusseldorf Germany VDEh Betriebsforschungsinst BFI Dept Automat Downstream Sohnstr 65 D-40237 Dusseldorf Germany
A method is shown to improve the accuracy of dose rate measurements for handheld instrumentation over the range of 50keV to 3MeV. Dose rate estimation in handheld devices is usually done by summing up the channel data... 详细信息
来源: 评论
Low-Dimensional Learning Control using Generic Signal Parametrizations  13th
Low-Dimensional Learning Control using Generic Signal Parame...
收藏 引用
13th International-Federation-of-Automatic-Control (IFAC) Workshop on Adaptive and Learning Control Systems (ALCOS)
作者: Willems, Jeroen Kikken, Edward Depraetere, Bruno Flanders Make Decis Lab Leuven Belgium
Iterative learning control (ILC) can yield superior performance for repetitive tasks while only requiring approximate models, making this control strategy very appealing for industry. However, applying it to non-linea... 详细信息
来源: 评论
Exploring microRNA Regulation of Cancer with Context-Aware Deep Cancer Classifier  24
Exploring microRNA Regulation of Cancer with Context-Aware D...
收藏 引用
24th Pacific Symposium on Biocomputing (PSB)
作者: Pyman, Blake Sedghi, Alireza Azizi, Shekoofeh Tyryshkin, Kathrin Renwick, Neil Mousavi, Parvin Queens Univ Sch Comp Kingston ON K7L 3N6 Canada
Background: MicroRNAs (miRNAs) are small, non-coding RNA that regulate gene expression through post-transcriptional silencing. Differential expression observed in miRNAs, combined with advancements in deep learning (D... 详细信息
来源: 评论
Testing the Robustness of Manifold Learning on Examples of Thinned-Out Data
Testing the Robustness of Manifold Learning on Examples of T...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Aziz, Fayeem Chalup, Stephan Univ Newcastle Sch Elect Engn & Comp Interdisciplinary Machine Learning Res Grp Callaghan NSW 2308 Australia
Manifold learning can only be successful if enough data is available. If the data is too sparse, the geometrical and topological structure of the manifold extracted from the data cannot be recognised and the manifold ... 详细信息
来源: 评论
Deep Learning Based Dosimetry Evaluation at Organs-at-Risk in Esophageal Radiation Treatment Planning  41
Deep Learning Based Dosimetry Evaluation at Organs-at-Risk i...
收藏 引用
41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Jiang, Dashan Li, Teng Mao, Ronghu Du, Chi Liu, Jianfei Anhui Univ Elect Engn & Automat Hefei Peoples R China Zhengzhou Univ Henan Canc Hosp Dept Radiat Oncol Affiliated Canc Hosp Zhengzhou Henan Peoples R China Second Peoples Hosp Neijiang Canc Ctr Neijiang 641000 Sichuan Peoples R China
Rapid esophageal radiation treatment planning is often obstructed by manually adjusting optimization parameters. The adjustment process is commonly guided by the dose-volume histogram (DVH), which evaluates dosimetry ... 详细信息
来源: 评论
A Closer Look at Disentangling in β-VAE  53
A Closer Look at Disentangling in β-VAE
收藏 引用
53rd Asilomar Conference on Signals, Systems, and Computers (ACSSC)
作者: Sikka, Harshvardhan Zhong, Weishun Yin, Jun Pehlevan, Cengiz Harvard Univ Sch Engn & Appl Sci Cambridge MA 02138 USA MIT Dept Phys Cambridge MA 02139 USA Harvard Univ Ctr Brain Sci Cambridge MA 02138 USA Harvard Univ Dept Phys Cambridge MA 02138 USA
In many data analysis tasks, it is beneficial to learn representations where each dimension is statistically independent and thus disentangled from the others. If data generating factors are also statistically indepen... 详细信息
来源: 评论