咨询与建议

限定检索结果

文献类型

  • 2,596 篇 期刊文献
  • 1,662 篇 会议
  • 37 篇 学位论文
  • 2 册 图书
  • 1 篇 资讯

馆藏范围

  • 4,298 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,953 篇 工学
    • 2,467 篇 计算机科学与技术...
    • 1,595 篇 电气工程
    • 698 篇 信息与通信工程
    • 426 篇 控制科学与工程
    • 385 篇 软件工程
    • 272 篇 仪器科学与技术
    • 166 篇 机械工程
    • 165 篇 生物医学工程(可授...
    • 153 篇 测绘科学与技术
    • 150 篇 电子科学与技术(可...
    • 99 篇 石油与天然气工程
    • 81 篇 环境科学与工程(可...
    • 78 篇 交通运输工程
    • 74 篇 动力工程及工程热...
    • 70 篇 材料科学与工程(可...
    • 64 篇 土木工程
    • 63 篇 网络空间安全
    • 58 篇 化学工程与技术
    • 41 篇 生物工程
    • 40 篇 安全科学与工程
  • 874 篇 理学
    • 287 篇 物理学
    • 247 篇 生物学
    • 156 篇 化学
    • 139 篇 地球物理学
    • 132 篇 数学
  • 552 篇 医学
    • 342 篇 临床医学
    • 126 篇 基础医学(可授医学...
    • 84 篇 特种医学
  • 382 篇 管理学
    • 326 篇 管理科学与工程(可...
  • 75 篇 农学
  • 22 篇 经济学
  • 22 篇 法学
  • 16 篇 文学
  • 14 篇 艺术学
  • 12 篇 教育学
  • 3 篇 哲学
  • 2 篇 军事学

主题

  • 4,298 篇 autoencoder
  • 1,046 篇 deep learning
  • 431 篇 anomaly detectio...
  • 369 篇 machine learning
  • 241 篇 feature extracti...
  • 155 篇 convolutional ne...
  • 152 篇 neural network
  • 151 篇 unsupervised lea...
  • 130 篇 neural networks
  • 109 篇 training
  • 108 篇 lstm
  • 106 篇 classification
  • 105 篇 dimensionality r...
  • 82 篇 cnn
  • 80 篇 clustering
  • 79 篇 representation l...
  • 79 篇 decoding
  • 77 篇 transfer learnin...
  • 77 篇 deep neural netw...
  • 68 篇 convolutional ne...

机构

  • 17 篇 univ chinese aca...
  • 10 篇 cent south univ ...
  • 10 篇 univ elect sci &...
  • 9 篇 chongqing univ c...
  • 9 篇 univ chinese aca...
  • 9 篇 northwestern pol...
  • 9 篇 iiit delhi new d...
  • 9 篇 nanyang technol ...
  • 8 篇 hong kong polyte...
  • 8 篇 cent south univ ...
  • 8 篇 tianjin univ col...
  • 8 篇 univ elect sci &...
  • 8 篇 korea adv inst s...
  • 8 篇 peng cheng lab p...
  • 7 篇 china univ geosc...
  • 7 篇 chinese acad sci...
  • 7 篇 harbin engn univ...
  • 6 篇 queens univ dept...
  • 6 篇 new jersey inst ...
  • 6 篇 tsinghua univ de...

作者

  • 20 篇 majumdar angshul
  • 13 篇 wang wei
  • 8 篇 zhang wei
  • 7 篇 zhang lin
  • 7 篇 zhang lei
  • 7 篇 wang jian
  • 7 篇 wang hao
  • 7 篇 liu li
  • 7 篇 li bin
  • 7 篇 zhang kai
  • 7 篇 kim jin-young
  • 7 篇 hoydis jakob
  • 7 篇 zhang hao
  • 7 篇 chen wei
  • 7 篇 cho sung-bae
  • 7 篇 gao lianru
  • 7 篇 guo lei
  • 6 篇 wang lei
  • 6 篇 li li
  • 6 篇 wang kai

语言

  • 4,086 篇 英文
  • 163 篇 其他
  • 34 篇 中文
  • 6 篇 土耳其文
  • 4 篇 法文
  • 2 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 日文
  • 1 篇 葡萄牙文
检索条件"主题词=Autoencoder"
4298 条 记 录,以下是3931-3940 订阅
排序:
A Pipeline Approach in Identifying Important Input Features from Neural Networks  14
A Pipeline Approach in Identifying Important Input Features ...
收藏 引用
14th Annual Conference System of Systems Engineering (SoSE)
作者: He, Yuyu Lai, Chih Martinovic-Weigelt, Dalma Long, Zezheng Univ St Thomas Sch Engn Grad Program Software St Paul MN 55105 USA Univ St Thomas Dept Biol St Paul MN USA
Neural networks are well-known for their powerful capability in producing high prediction accuracy. However, due to the non-linear calculations in the network, it is very difficult for users to understand which input ... 详细信息
来源: 评论
Unsupervised Deep Clustering for Fashion Images  14th
Unsupervised Deep Clustering for Fashion Images
收藏 引用
14th International Conference on Knowledge Management in Organizations (KMO) - Synergistic Role of Knowledge Management in Organization
作者: Yan, Cairong Malhi, Umar Subhan Huang, Yongfeng Tao, Ran Donghua Univ Sch Comp Sci & Technol Shanghai Peoples R China
In many visual domains like fashion, building an effective unsupervised clustering model depends on visual feature representation instead of structured and semi-structured data. In this paper, we propose a fashion ima... 详细信息
来源: 评论
Fast Multi-Modal Reuse: Co-Occurrence Pre-Trained Deep Learning Models
Fast Multi-Modal Reuse: Co-Occurrence Pre-Trained Deep Learn...
收藏 引用
Conference on Real-Time Image Processing and Deep Learning
作者: Iyer, Vasanth Aved, Alexander Howlett, Todd B. Carlo, Jeffrey T. Mehmood, Asif Pissinou, Niki Iyengar, S. S. Troy Univ Comp Sci Dept Troy AL 36082 USA Air Force Res Labs Rome NY USA Air Force Res Labs Wright Patterson AFB OH USA Florida Int Univ Miami FL 33199 USA
The purpose of this paper is to study data fusion applications in traditional, spatial, and aerial video stream applications which addresses the processing of data from multiple sources using co-occurrence information... 详细信息
来源: 评论
Large-Scale and High-Dimensional Cell Outage Detection in 5G Self-Organizing Networks
Large-Scale and High-Dimensional Cell Outage Detection in 5G...
收藏 引用
Annual Summit and Conference of the Asia-Pacific-Signal-and-Information-Processing-Association (APSIPA ASC)
作者: Lin, Po-Chiang Yuan Ze Univ Dept Elect Engn Taoyuan Taiwan
In this paper, we investigate the cell outage detection in Self-Organizing Networks. The purpose of cell outage detection is to automatically detect whether there exist some failures or degradation in the base station... 详细信息
来源: 评论
Weapon Detection for Particular Scenarios Using Deep Learning  9th
Weapon Detection for Particular Scenarios Using Deep Learnin...
收藏 引用
9th Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA)
作者: Vallez, Noelia Velasco-Mata, Alberto Jose Corroto, Juan Deniz, Oscar Univ Castilla La Mancha ETSI Ind Avda Camilo Jose Cela S-N Ciudad Real 13071 Spain
The development of object detection systems is normally driven to achieve both high detection and low false positive rates in a certain public dataset. However, when put into a real scenario the result is generally an... 详细信息
来源: 评论
Semi-Supervised Information Extraction for Cancer Pathology Reports
Semi-Supervised Information Extraction for Cancer Pathology ...
收藏 引用
IEEE EMBS International Conference on Biomedical and Health Informatics (BHI)
作者: Qiu, John X. Gao, Shang Alawad, Mohammed Schaefferkoetter, Noah Alamudun, Folami Yoon, Hong-Jun Wu, Xiao-Cheng Tourassi, Georgia Oak Ridge Natl Lab Hlth Data Sci Inst Biomed Sci Engn & Comp Grp Oak Ridge TN 37830 USA Louisiana State Univ Hlth Sci Ctr Louisiana Tumor Registry New Orleans LA USA
Pathology reports are a main source of data for cancer surveillance programs. Manual coding of pathology reports is labor-intensive but necessary for obtaining labeled data to train automated information extraction sy... 详细信息
来源: 评论
Shape Part Transfer via Semantic Latent Space Factorization  4th
Shape Part Transfer via Semantic Latent Space Factorization
收藏 引用
4th International SEE Conference on Geometric Science of Information (GSI)
作者: Groscot, Raphael Cohen, Laurent Guibas, Leonidas Univ Paris 09 PSL Res Univ CEREMADE CNRS UMR 7534 F-75016 Paris France Stanford Univ Stanford CA 94305 USA
We present a latent space factorization that controls a generative neural network for shapes in a semantic way. Our method uses the segmentation data present in a collection of shapes to explicitly factorize the encod... 详细信息
来源: 评论
GENERATIVE AND ENCODED ANOMALY DETECTORS  10
GENERATIVE AND ENCODED ANOMALY DETECTORS
收藏 引用
10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS)
作者: Emerson, Tegan H. Edelberg, Jason A. Doster, Timothy Merrill, Nicholas Olson, Colin C. US Naval Res Lab Appl Opt Branch 4555 Overlook Ave SW Washington DC 20375 USA Pacific Northwest Natl Lab Richland WA 99352 USA
We present two fully unsupervised deep learning approaches for hyperspectral anomaly detection. In one approach we formulate the anomaly detection problem as an adversarial game where a generator network learns the di... 详细信息
来源: 评论
基于深度学习的医疗数据智能分析与识别系统设计
收藏 引用
电子设计工程 2021年 第10期29卷 46-50页
作者: 谷丽霞 刘欣芃 上海市第六人民医院 上海201303 郑州大学西亚斯学院 河南新郑451150
针对医疗数据的智能化识别与分析需求,文中对医疗财务大数据挖掘的相关方法进行了研究。通过引入深度学习中的深度置信网络(DBN),结合autoencoder自编码网络构建了数据处理系统,实现对医院经营状态的自动化评估。DBN网络使用受限玻尔兹... 详细信息
来源: 评论
OBJECTIVE IMAGE QUALITY ANALYSIS OF CONVOLUTIONAL NEURAL NETWORK LIGHT FIELD CODING  8
OBJECTIVE IMAGE QUALITY ANALYSIS OF CONVOLUTIONAL NEURAL NET...
收藏 引用
8th European Workshop on Visual Information Processing (EUVIP)
作者: Medda, Daniele Song, Wei Perra, Cristian Univ Cagliari UdR CNIT DIEE Cagliari Italy Shanghai Ocean Univ Coll Informat Technol Shanghai Peoples R China
Light field digital images are novel image modalities for capturing a sampled representation of the plenoptic function. A large amount of data is typically associated to a single sample of a scene, and data compressio... 详细信息
来源: 评论