咨询与建议

限定检索结果

文献类型

  • 2,560 篇 期刊文献
  • 1,644 篇 会议
  • 51 篇 学位论文
  • 2 册 图书
  • 1 篇 资讯

馆藏范围

  • 4,258 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,904 篇 工学
    • 2,435 篇 计算机科学与技术...
    • 1,576 篇 电气工程
    • 682 篇 信息与通信工程
    • 413 篇 控制科学与工程
    • 376 篇 软件工程
    • 265 篇 仪器科学与技术
    • 164 篇 生物医学工程(可授...
    • 161 篇 机械工程
    • 151 篇 测绘科学与技术
    • 139 篇 电子科学与技术(可...
    • 93 篇 石油与天然气工程
    • 76 篇 环境科学与工程(可...
    • 71 篇 动力工程及工程热...
    • 69 篇 交通运输工程
    • 67 篇 材料科学与工程(可...
    • 63 篇 土木工程
    • 58 篇 化学工程与技术
    • 58 篇 网络空间安全
    • 40 篇 生物工程
    • 34 篇 力学(可授工学、理...
  • 853 篇 理学
    • 284 篇 物理学
    • 245 篇 生物学
    • 148 篇 化学
    • 137 篇 地球物理学
    • 123 篇 数学
  • 542 篇 医学
    • 342 篇 临床医学
    • 123 篇 基础医学(可授医学...
    • 83 篇 特种医学
  • 365 篇 管理学
    • 309 篇 管理科学与工程(可...
    • 36 篇 图书情报与档案管...
  • 74 篇 农学
  • 21 篇 经济学
  • 19 篇 法学
  • 14 篇 艺术学
  • 13 篇 文学
  • 12 篇 教育学
  • 3 篇 哲学
  • 1 篇 军事学

主题

  • 4,258 篇 autoencoder
  • 1,038 篇 deep learning
  • 430 篇 anomaly detectio...
  • 364 篇 machine learning
  • 238 篇 feature extracti...
  • 154 篇 convolutional ne...
  • 152 篇 neural network
  • 152 篇 unsupervised lea...
  • 129 篇 neural networks
  • 109 篇 training
  • 108 篇 lstm
  • 105 篇 classification
  • 103 篇 dimensionality r...
  • 82 篇 cnn
  • 79 篇 representation l...
  • 79 篇 clustering
  • 78 篇 decoding
  • 77 篇 transfer learnin...
  • 77 篇 deep neural netw...
  • 68 篇 convolutional ne...

机构

  • 16 篇 univ chinese aca...
  • 10 篇 cent south univ ...
  • 10 篇 univ elect sci &...
  • 9 篇 chongqing univ c...
  • 9 篇 univ chinese aca...
  • 9 篇 northwestern pol...
  • 9 篇 iiit delhi new d...
  • 9 篇 nanyang technol ...
  • 8 篇 hong kong polyte...
  • 8 篇 cent south univ ...
  • 8 篇 tianjin univ col...
  • 8 篇 univ elect sci &...
  • 8 篇 korea adv inst s...
  • 8 篇 peng cheng lab p...
  • 7 篇 china univ geosc...
  • 7 篇 chinese acad sci...
  • 7 篇 harbin engn univ...
  • 7 篇 brno university ...
  • 6 篇 queens univ dept...
  • 6 篇 new jersey inst ...

作者

  • 20 篇 majumdar angshul
  • 13 篇 wang wei
  • 7 篇 zhang lin
  • 7 篇 zhang lei
  • 7 篇 wang jian
  • 7 篇 wang hao
  • 7 篇 liu li
  • 7 篇 li bin
  • 7 篇 kim jin-young
  • 7 篇 hoydis jakob
  • 7 篇 chen wei
  • 7 篇 cho sung-bae
  • 7 篇 gao lianru
  • 7 篇 zhang wei
  • 7 篇 guo lei
  • 6 篇 wang lei
  • 6 篇 li li
  • 6 篇 wang kai
  • 6 篇 li yuan
  • 6 篇 liu jie

语言

  • 4,094 篇 英文
  • 101 篇 其他
  • 34 篇 中文
  • 7 篇 法文
  • 6 篇 德文
  • 6 篇 土耳其文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 意大利文
  • 1 篇 日文
  • 1 篇 葡萄牙文
检索条件"主题词=Autoencoder"
4258 条 记 录,以下是4051-4060 订阅
Automatic Unusual Driving Event Identification for Dependable Self-Driving  18
Automatic Unusual Driving Event Identification for Dependabl...
收藏 引用
16th Conference on Embedded Networked Sensor Systems (SENSYS)
作者: Li, Hongyu Wang, Hairong Liu, Luyang Gruteser, Marco Rutgers State Univ WINLAB North Brunswick NJ 08902 USA
This paper introduces techniques to automatically detect driving corner cases from dashcam video and inertial sensors. Developing robust driver assistance and automated driving technologies requires an understanding o... 详细信息
来源: 评论
SCORES: Shape Composition with Recursive Substructure Priors
SCORES: Shape Composition with Recursive Substructure Priors
收藏 引用
11th ACM SIGGRAPH Conference and Exhibition on Computer Graphics and Interactive Techniques in Asia (SA)
作者: Zhu, Chenyang Xu, Kai Chaudhuri, Siddhartha Yi, Renjiao Zhang, Hao Simon Fraser Univ Burnaby BC Canada Natl Univ Def Technol Changsha Hunan Peoples R China Princeton Univ Princeton NJ 08544 USA Adobe Res San Jose CA USA Indian Inst Technol Bombay Maharashtra India
We introduce SCORES, a recursive neural network for shape composition. Our network takes as input sets of parts from two or more source 3D shapes and a rough initial placement of the parts. It outputs an optimized par... 详细信息
来源: 评论
DL-GSA: A Deep Learning Metaheuristic Approach to Missing Data Imputation  9th
DL-GSA: A Deep Learning Metaheuristic Approach to Missing Da...
收藏 引用
9th International Conference on Swarm Intelligence (ICSI)
作者: Garg, Ayush Naryani, Deepika Aggarwal, Garvit Aggarwal, Swati Univ Delhi Netaji Subhas Inst Technol Div Comp Engn New Delhi India
Incomplete data has emerged as a prominent problem in the fields of machine learning, big data and various other academic studies. Due to the surge in deep learning techniques for problem-solving, in this paper, autho... 详细信息
来源: 评论
Fast Activation Function Approach for Deep Learning Based Online Anomaly Intrusion Detection  4
Fast Activation Function Approach for Deep Learning Based On...
收藏 引用
4th IEEE International Conference on Big Data Security on Cloud (BigDataSecurity) / 4th IEEE International Conference on High Performance and Smart Computing (HPSC) / 3rd IEEE International Conference on Intelligent Data and Security (IDS)
作者: Alrawashdeh, Khaled Purdy, Carla Univ Cincinnati Dept Elect Engn & Comp Syst Cincinnati OH 45221 USA
The piecewise-linear activation functions such as ReLU become the catalyst that revolutionizes the training of the deep neural networks. Common nonlinear activation functions used in neural networks such as the tanh a... 详细信息
来源: 评论
Computational seismic interpretation using attention models, texture dissimilarity, and learning
Computational seismic interpretation using attention models,...
收藏 引用
作者: Shafiq, Muhammad Amir Georgia Institute of Technology
学位级别:博士
The exploration of oil and gas is a vital part of today's increasing power demands to meet the energy we need to power our homes, businesses, and transportation. Oil and gas explorers use seismic surveys, both ons... 详细信息
来源: 评论
基于特征提取和异常分类的网络流量异常检测方法
基于特征提取和异常分类的网络流量异常检测方法
收藏 引用
作者: 杜臻 南京邮电大学
学位级别:硕士
网络流量异常检测是网络和安全管理领域的重要研究内容。通过分析网络流量,可以评估网络环境的健康状况并对异常及攻击行为预警与防范,特别是对网络流量异常的识别和分类提供实用有效的指导。论文对基于HTTP协议的Web攻击所造成的异常... 详细信息
来源: 评论
汽车测试的HIL设计与驾驶行为标准化研究
汽车测试的HIL设计与驾驶行为标准化研究
收藏 引用
作者: 徐恺 浙江大学
学位级别:硕士
汽车电子控制系统(Automotive electronic control system)在汽车领域的重要性日益增强,它让汽车变得更加安全、舒适和节能。现阶段汽车电子控制系统正变得越来越复杂,而汽车电子控制系统中以动力总成模块PCM最为复杂和核心,为了解决PC... 详细信息
来源: 评论
Mastering TensorFlow 1.x: Advanced machine learning and deep learning concepts using TensorFlow 1.x and Keras
收藏 引用
2018年
作者: Armando Fandango
Build, scale, and deploy deep neural network models using the star libraries in PythonAbout This Book• Delve into advanced machine learning and deep learning use cases using Tensorflow and Keras• Build, deploy, and sc... 详细信息
来源: 评论
SEGMENTAL AUDIO WORD2VEC: REPRESENTING UTTERANCES AS SEQUENCES OF VECTORS WITH APPLICATIONS IN SPOKEN TERM DETECTION
SEGMENTAL AUDIO WORD2VEC: REPRESENTING UTTERANCES AS SEQUENC...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Wang, Yu-Hsuan Lee, Hung-yi Lee, Lin-shan Natl Taiwan Univ Coll Elect Engn & Comp Sci Taipei Taiwan
While Word2Vec represents words (in text) as vectors carrying semantic information, audio Word2Vec was shown to be able to represent signal segments of spoken words as vectors carrying phonetic structure information. ... 详细信息
来源: 评论
RELEVANCE FEEDBACK AND SPARSITY HANDLING METHODS FOR TEMPORAL DATA
RELEVANCE FEEDBACK AND SPARSITY HANDLING METHODS FOR TEMPORA...
收藏 引用
作者: Bahaeddin ERAVCI Bilkent University
学位级别:博士
Data with temporal ordering arises in many natural and digital processes with an increasing importance and immense number of applications. This study provides solutions to data mining problems in analyzing time series... 详细信息
来源: 评论