咨询与建议

限定检索结果

文献类型

  • 2,553 篇 期刊文献
  • 1,644 篇 会议
  • 51 篇 学位论文
  • 2 册 图书
  • 1 篇 资讯

馆藏范围

  • 4,251 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,897 篇 工学
    • 2,430 篇 计算机科学与技术...
    • 1,574 篇 电气工程
    • 679 篇 信息与通信工程
    • 414 篇 控制科学与工程
    • 376 篇 软件工程
    • 265 篇 仪器科学与技术
    • 164 篇 生物医学工程(可授...
    • 161 篇 机械工程
    • 151 篇 测绘科学与技术
    • 139 篇 电子科学与技术(可...
    • 93 篇 石油与天然气工程
    • 76 篇 环境科学与工程(可...
    • 71 篇 动力工程及工程热...
    • 69 篇 交通运输工程
    • 65 篇 材料科学与工程(可...
    • 64 篇 土木工程
    • 59 篇 网络空间安全
    • 58 篇 化学工程与技术
    • 40 篇 生物工程
    • 35 篇 力学(可授工学、理...
  • 853 篇 理学
    • 284 篇 物理学
    • 245 篇 生物学
    • 148 篇 化学
    • 137 篇 地球物理学
    • 124 篇 数学
  • 542 篇 医学
    • 342 篇 临床医学
    • 123 篇 基础医学(可授医学...
    • 83 篇 特种医学
  • 365 篇 管理学
    • 309 篇 管理科学与工程(可...
    • 36 篇 图书情报与档案管...
  • 74 篇 农学
  • 21 篇 经济学
  • 18 篇 法学
  • 14 篇 艺术学
  • 13 篇 文学
  • 12 篇 教育学
  • 3 篇 哲学
  • 1 篇 军事学

主题

  • 4,251 篇 autoencoder
  • 1,035 篇 deep learning
  • 430 篇 anomaly detectio...
  • 364 篇 machine learning
  • 236 篇 feature extracti...
  • 154 篇 convolutional ne...
  • 152 篇 neural network
  • 152 篇 unsupervised lea...
  • 129 篇 neural networks
  • 108 篇 lstm
  • 107 篇 training
  • 105 篇 classification
  • 103 篇 dimensionality r...
  • 82 篇 cnn
  • 79 篇 representation l...
  • 79 篇 clustering
  • 77 篇 transfer learnin...
  • 77 篇 decoding
  • 77 篇 deep neural netw...
  • 67 篇 convolutional ne...

机构

  • 16 篇 univ chinese aca...
  • 10 篇 cent south univ ...
  • 10 篇 univ elect sci &...
  • 9 篇 chongqing univ c...
  • 9 篇 univ chinese aca...
  • 9 篇 northwestern pol...
  • 9 篇 iiit delhi new d...
  • 9 篇 nanyang technol ...
  • 8 篇 hong kong polyte...
  • 8 篇 cent south univ ...
  • 8 篇 tianjin univ col...
  • 8 篇 univ elect sci &...
  • 8 篇 korea adv inst s...
  • 8 篇 peng cheng lab p...
  • 7 篇 china univ geosc...
  • 7 篇 chinese acad sci...
  • 7 篇 harbin engn univ...
  • 7 篇 brno university ...
  • 6 篇 queens univ dept...
  • 6 篇 new jersey inst ...

作者

  • 20 篇 majumdar angshul
  • 13 篇 wang wei
  • 7 篇 zhang lin
  • 7 篇 zhang lei
  • 7 篇 wang jian
  • 7 篇 wang hao
  • 7 篇 liu li
  • 7 篇 li bin
  • 7 篇 kim jin-young
  • 7 篇 hoydis jakob
  • 7 篇 chen wei
  • 7 篇 cho sung-bae
  • 7 篇 gao lianru
  • 7 篇 zhang wei
  • 7 篇 guo lei
  • 6 篇 wang lei
  • 6 篇 li li
  • 6 篇 wang kai
  • 6 篇 li yuan
  • 6 篇 liu jie

语言

  • 4,087 篇 英文
  • 101 篇 其他
  • 34 篇 中文
  • 7 篇 法文
  • 6 篇 德文
  • 6 篇 土耳其文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 意大利文
  • 1 篇 日文
  • 1 篇 葡萄牙文
检索条件"主题词=Autoencoder"
4251 条 记 录,以下是421-430 订阅
排序:
Exploring the Effect of autoencoder Based Feature Learning for a Deep Reinforcement Learning Policy for Providing Proactive Help  24th
Exploring the Effect of Autoencoder Based Feature Learning f...
收藏 引用
24th International Conference on Artificial Intelligence in Education (AIED)
作者: Alam, Nazia Mostafavi, Behrooz Chi, Min Barnes, Tiffany North Carolina State Univ Raleigh NC 27695 USA
Providing timely assistance to students in intelligent tutoring systems is a challenging research problem. In this study, we aim to address this problem by determining when to provide proactive help with autoencoder b... 详细信息
来源: 评论
Improved Image Compression using autoencoder and Discrete Cosine Transformation  5
Improved Image Compression using Autoencoder and Discrete Co...
收藏 引用
5th International Conference on Innovative Trends in Information Technology (ICITIIT)
作者: Jindal, Sarthak Paka, Indradhar Agarwal, Esha Mishra, Atul BML Munjal Univ Gurgaon India
This study proposes a method for improved image compression using a combination of discrete cosine transformation (DCT) and autoencoder. Images typically contain large amounts of data that require significant storage ... 详细信息
来源: 评论
User-Centric Online Gossip Training for autoencoder-Based CSI Feedback
收藏 引用
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 2022年 第3期16卷 559-572页
作者: Guo, Jiajia Zuo, Yiping Wen, Chao-Kai Jin, Shi Southeast Univ Natl Mobile Commun Res Lab Nanjing 210096 Peoples R China Natl Sun Yat Sen Univ Inst Commun Engn Kaohsiung 80424 Taiwan
Recently, the autoencoder framework has shown great potential in reducing the feedback overhead of the downlink channel state information (CSI). In this work, we further find that the user equipment in practical syste... 详细信息
来源: 评论
Optimized Deep autoencoder Model for Internet of Things Intruder Detection
收藏 引用
IEEE ACCESS 2022年 10卷 8434-8448页
作者: Lahasan, Badr Samma, Hussein Univ Shabwah Fac Comp & Informat Technol Shabwah Yemen Univ Teknol Malaysia UTM Fac Engn Sch Comp Johor Baharu 81310 Johor Malaysia
The development of an optimized deep learning intruder detection model that could be executed on IoT devices with limited hardware support has several advantages, such as the reduction of communication energy, lowerin... 详细信息
来源: 评论
Impact of autoencoder based compact representation on emotion detection from audio
收藏 引用
JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING 2022年 第2期13卷 867-885页
作者: Patel, Nivedita Patel, Shireen Mankad, Sapan H. Nirma Univ Inst Technol CSE Dept Ahmadabad Gujarat India
Emotion recognition from speech has its fair share of applications and consequently extensive research has been done over the past few years in this interesting field. However, many of the existing solutions aren'... 详细信息
来源: 评论
Comparing autoencoder Variants for Real-Time Denoising of Hyperspectral X-Ray
收藏 引用
IEEE SENSORS JOURNAL 2022年 第18期22卷 17997-18007页
作者: Bonettini, Nicolo Gonano, Carlo Andrea Bestagini, Paolo Marcon, Marco Garavelli, Bruno Tubaro, Stefano Politecn Milan Comp Sci & Engn Milan Italy Politecn Milan Elect Engn Milan Italy Politecn Milan Informat Technol Milan Italy Informat & Commun Technol ICT Trieste Italy
Hyperspectral X ray analysis is used in many industrial pipelines, from quality control to detection of low-density contaminants in food. Unfortunately, the signal acquired by X-ray sensors is often affected by a grea... 详细信息
来源: 评论
Residual-recursive autoencoder for accelerated evolution in savonius wind turbines optimization
收藏 引用
NEUROCOMPUTING 2022年 第0期500卷 909-920页
作者: Zhou, Qianwei Li, Baoqing Tao, Peng Xu, Zhang Zhou, Chen Wu, Yanzhuang Hu, Haigen Zhejiang Univ Technol Coll Comp Sci & Technol Hangzhou Peoples R China Key Lab Visual Media Intelligent Proc Technol Zhej Hangzhou Peoples R China Zhejiang Univ Technol Coll Mech Engn Hangzhou Peoples R China Chinese Acad Sci Shanghai Inst Microsyst & Informat Technol Beijing Peoples R China
Recent studies verified that a genetic algorithm can discover efficient and innovative wind turbines by using image encoding and decoding techniques. To accelerate the optimization, in this work, ResidualRecursion Aut... 详细信息
来源: 评论
Perturbation of deep autoencoder weights for model compression and classification of tabular data
收藏 引用
NEURAL NETWORKS 2022年 156卷 160-169页
作者: Abrar, Sakib Samad, Manar D. Tennessee State Univ Dept Comp Sci Nashville TN 37209 USA Tennessee State Univ Dept Comp Sci 3500 John A Merritt BlvdPOB 9604 Nashville TN 37209 USA
Fully connected deep neural networks (DNN) often include redundant weights leading to overfitting and high memory requirements. Additionally, in tabular data classification, DNNs are challenged by the often superior p... 详细信息
来源: 评论
ConvAE-LSTM: Convolutional autoencoder Long Short-Term Memory Network for Smartphone-Based Human Activity Recognition
收藏 引用
IEEE ACCESS 2022年 10卷 4137-4156页
作者: Thakur, Dipanwita Biswas, Suparna Ho, Edmond S. L. Chattopadhyay, Samiran Banasthali Vidyapith Dept Comp Sci Jaipur 304022 Rajasthan India Maulana Abul Kalam Azad Univ Technol Dept Comp Sci & Engn Kolkata 700064 W Bengal India Northumbria Univ Dept Comp & Informat Sci Newcastle Upon Tyne NE1 8ST Tyne & Wear England TCG Ctr Res & Educ Sci & Technol Inst Adv Intelligence Kolkata 700091 India Jadavpur Univ Dept Informat Technol Kolkata 700032 India
The self-regulated recognition of human activities from time-series smartphone sensor data is a growing research area in smart and intelligent health care. Deep learning (DL) approaches have exhibited improvements ove... 详细信息
来源: 评论
Generative Model of Suitable Meme Sentences for Images Using autoencoder  20th
Generative Model of Suitable Meme Sentences for Images Using...
收藏 引用
20th Pacific Rim International Conference on Artificial Intelligence
作者: Yamatomi, Ryo Mahboubi, Shahrzad Ninomiya, Hiroshi Shonan Inst Technol SIT 1-1-25 Tsujido Nishikaigan Fujisawa Kanagawa 2518511 Japan
This paper proposes a new image caption generative model for Memes called GUMI-AE. Meme denotes a humorous short sentence suitable for the given image in this paper. An Image caption generative model usually consists ... 详细信息
来源: 评论