咨询与建议

限定检索结果

文献类型

  • 2,553 篇 期刊文献
  • 1,644 篇 会议
  • 44 篇 学位论文
  • 2 册 图书
  • 1 篇 资讯

馆藏范围

  • 4,244 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,895 篇 工学
    • 2,430 篇 计算机科学与技术...
    • 1,574 篇 电气工程
    • 678 篇 信息与通信工程
    • 413 篇 控制科学与工程
    • 376 篇 软件工程
    • 264 篇 仪器科学与技术
    • 164 篇 生物医学工程(可授...
    • 161 篇 机械工程
    • 151 篇 测绘科学与技术
    • 139 篇 电子科学与技术(可...
    • 93 篇 石油与天然气工程
    • 76 篇 环境科学与工程(可...
    • 71 篇 动力工程及工程热...
    • 69 篇 交通运输工程
    • 65 篇 材料科学与工程(可...
    • 62 篇 土木工程
    • 58 篇 化学工程与技术
    • 58 篇 网络空间安全
    • 40 篇 生物工程
    • 34 篇 力学(可授工学、理...
  • 850 篇 理学
    • 283 篇 物理学
    • 243 篇 生物学
    • 148 篇 化学
    • 137 篇 地球物理学
    • 123 篇 数学
  • 542 篇 医学
    • 342 篇 临床医学
    • 123 篇 基础医学(可授医学...
    • 83 篇 特种医学
  • 365 篇 管理学
    • 309 篇 管理科学与工程(可...
    • 36 篇 图书情报与档案管...
  • 74 篇 农学
  • 21 篇 经济学
  • 18 篇 法学
  • 14 篇 艺术学
  • 13 篇 文学
  • 11 篇 教育学
  • 3 篇 哲学
  • 1 篇 军事学

主题

  • 4,244 篇 autoencoder
  • 1,034 篇 deep learning
  • 430 篇 anomaly detectio...
  • 363 篇 machine learning
  • 236 篇 feature extracti...
  • 153 篇 convolutional ne...
  • 152 篇 unsupervised lea...
  • 149 篇 neural network
  • 128 篇 neural networks
  • 109 篇 training
  • 107 篇 lstm
  • 105 篇 classification
  • 103 篇 dimensionality r...
  • 82 篇 cnn
  • 79 篇 representation l...
  • 79 篇 clustering
  • 77 篇 transfer learnin...
  • 77 篇 decoding
  • 77 篇 deep neural netw...
  • 67 篇 convolutional ne...

机构

  • 16 篇 univ chinese aca...
  • 10 篇 cent south univ ...
  • 10 篇 univ elect sci &...
  • 9 篇 chongqing univ c...
  • 9 篇 univ chinese aca...
  • 9 篇 northwestern pol...
  • 9 篇 iiit delhi new d...
  • 9 篇 nanyang technol ...
  • 8 篇 hong kong polyte...
  • 8 篇 cent south univ ...
  • 8 篇 tianjin univ col...
  • 8 篇 univ elect sci &...
  • 8 篇 korea adv inst s...
  • 8 篇 peng cheng lab p...
  • 7 篇 china univ geosc...
  • 7 篇 chinese acad sci...
  • 7 篇 harbin engn univ...
  • 6 篇 queens univ dept...
  • 6 篇 new jersey inst ...
  • 6 篇 tsinghua univ de...

作者

  • 20 篇 majumdar angshul
  • 13 篇 wang wei
  • 7 篇 zhang lin
  • 7 篇 zhang lei
  • 7 篇 wang jian
  • 7 篇 wang hao
  • 7 篇 liu li
  • 7 篇 li bin
  • 7 篇 kim jin-young
  • 7 篇 hoydis jakob
  • 7 篇 chen wei
  • 7 篇 cho sung-bae
  • 7 篇 gao lianru
  • 7 篇 zhang wei
  • 7 篇 guo lei
  • 6 篇 wang lei
  • 6 篇 li li
  • 6 篇 wang kai
  • 6 篇 li yuan
  • 6 篇 liu jie

语言

  • 4,082 篇 英文
  • 101 篇 其他
  • 34 篇 中文
  • 7 篇 法文
  • 6 篇 德文
  • 6 篇 土耳其文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 意大利文
  • 1 篇 日文
  • 1 篇 葡萄牙文
检索条件"主题词=Autoencoder"
4244 条 记 录,以下是491-500 订阅
排序:
autoencoder and Deep Neural Network based Energy Consumption Analysis of Marine Diesel Engine  19
Autoencoder and Deep Neural Network based Energy Consumption...
收藏 引用
19th IEEE International Conference on Mechatronics and Automation (IEEE ICMA)
作者: Zhang, Deft Wang, Kangli Gao, Jianfeng Che, Xiuming Tianjin Univ Technol Maritime Coll Tianjin Peoples R China Northern Nav Serv Ctr Tianjin AtoN Div Tianjin Peoples R China
In order to improve the intelligent energy efficiency management of ships, evaluate the fuel utilization efficiency of marine diesel engine. In this paper, a fuel consumption model of marine diesel engine based on aut... 详细信息
来源: 评论
AutoSeqRec: autoencoder for Efficient Sequential Recommendation  23
AutoSeqRec: Autoencoder for Efficient Sequential Recommendat...
收藏 引用
32nd ACM International Conference on Information and Knowledge Management (CIKM)
作者: Liu, Sijia Liu, Jiahao Gu, Hansu Li, Dongsheng Lu, Tun Zhang, Peng Gu, Ning Fudan Univ Shanghai Peoples R China Microsoft Res Asia Shanghai Peoples R China
Sequential recommendation demonstrates the capability to recommend items by modeling the sequential behavior of users. Traditional methods typically treat users as sequences of items, overlooking the collaborative rel... 详细信息
来源: 评论
Combating Sensor Drift with an LSTM Neural Network Enhanced by autoencoder Preprocessing
Combating Sensor Drift with an LSTM Neural Network Enhanced ...
收藏 引用
IEEE Sensors Conference
作者: Wang, Junming Shu, Jing Li, Zheng Tong, Raymond Kai-Yu Chinese Univ Hong Kong Dept Biomed Engn Shatin Hong Kong Peoples R China Chinese Univ Hong Kong Dept Surg Shatin Hong Kong Peoples R China
This paper presents a novel approach to compensate for sensor long-term drift by combining an autoencoder with a long short-term neural network (LSTM). Specifically, an autoencoder is utilized to model the sensor'... 详细信息
来源: 评论
An autoencoder-based fast online clustering algorithm for evolving data stream  23
An autoencoder-based fast online clustering algorithm for ev...
收藏 引用
2nd Asia Conference on Algorithms, Computing and Machine Learning (CACML)
作者: Gao, Dazheng Univ Sci & Technol China Hefei Peoples R China
In the era of Big Data, more and more IoT devices are generating huge amounts of high-dimensional, real-time and dynamic data streams. As a result, there is a growing interest in how to cluster this data effectively a... 详细信息
来源: 评论
Graph Regularized autoencoder and its Application in Unsupervised Anomaly Detection
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2022年 第8期44卷 4110-4124页
作者: Ahmed, Imtiaz Galoppo, Travis Hu, Xia Ding, Yu Texas A&M Univ Dept Ind & Syst Engn College Stn TX 77843 USA BAE Syst Inc Charlotte NC 28277 USA Texas A&M Univ Dept Comp Sci & Engn College Stn TX 77843 USA
Dimensionality reduction is a crucial first step for many unsupervised learning tasks including anomaly detection and clustering. autoencoder is a popular mechanism to accomplish dimensionality reduction. In order to ... 详细信息
来源: 评论
Fault detection and diagnosis with a novel source-aware autoencoder and deep residual neural network
收藏 引用
NEUROCOMPUTING 2022年 第0期488卷 618-633页
作者: Amini, Nima Zhu, Qinqin Univ Waterloo Dept Chem Engn Waterloo ON N2L 3G1 Canada
The capability of deep learning (DL) techniques for dealing with non-linear, dynamic and correlated data has paved the way for DL-based fault detection and diagnosis (FDD). Among them, autoencoders (AEs) have shown th... 详细信息
来源: 评论
Graph autoencoder-based unsupervised outlier detection
收藏 引用
INFORMATION SCIENCES 2022年 608卷 532-550页
作者: Du, Xusheng Yu, Jiong Chu, Zheng Jin, Lina Chen, Jiaying Xinjiang Univ Sch Informat Sci & Engn Urumqi 830046 Peoples R China
Outlier detection technologies play an important role in various application domains. Most existing outlier detection algorithms have difficulty detecting outliers that are mixed within normal object regions or around... 详细信息
来源: 评论
Ball bearing multiple failure diagnosis using feature-selected autoencoder model
收藏 引用
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY 2022年 第7-8期120卷 4803-4819页
作者: Cheng, Ren-Chi Chen, Kuo-Shen Natl Cheng Kung Univ Dept Mech Engn Tainan Taiwan
Recently, with the advance in information technology, pure data-driven approaches such as machine learnings have been widely applied in status diagnosis. However, the accuracy of those predictions strongly relies on t... 详细信息
来源: 评论
Monocular depth estimation with multi-view attention autoencoder
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2022年 第23期81卷 33759-33770页
作者: Jung, Geunho Yoon, Sang Min Kookmin Univ Coll Comp Sci HCI Lab 77 Jeongneung Ro Seoul 02707 South Korea
Depth map estimation from a single RGB image is a fundamental computer vision and image processing task for various applications. Deep learning based depth map estimation has improved prediction accuracy compared with... 详细信息
来源: 评论
Denoised Internal Models:A Brain-inspired autoencoder Against Adversarial Attacks
收藏 引用
Machine Intelligence Research 2022年 第5期19卷 456-471页
作者: Kai-Yuan Liu Xing-Yu Li Yu-Rui Lai Hang Su Jia-Chen Wang Chun-Xu Guo Hong Xie Ji-Song Guan Yi Zhou School of Life Sciences and Technology ShanghaiTech UniversityShanghai 201210China Shanghai Center for Brain Science and Brain-inspired Technology Shanghai 201602China School of Life Sciences Tsinghua UniversityBeijing 100084China National Engineering Laboratory for Brain-inspired Intelligence Technology and Application School of Information Science and TechnologyUniversity of Science and Technology of ChinaHefei 230026China Institute of Photonic Chips University of Shanghai for Science and TechnologyShanghai 200093China Centre for Artificial-intelligence Nanophotonics School of Optical-electrical and Computer EngineeringUniversity of Shanghai for Science and TechnologyShanghai 200093China
Despite its great success,deep learning severely suffers from robustness;i.e.,deep neural networks are very vulnerable to adversarial attacks,even the simplest *** by recent advances in brain science,we propose the de... 详细信息
来源: 评论