咨询与建议

限定检索结果

文献类型

  • 2,560 篇 期刊文献
  • 1,644 篇 会议
  • 51 篇 学位论文
  • 2 册 图书
  • 1 篇 资讯

馆藏范围

  • 4,258 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,904 篇 工学
    • 2,435 篇 计算机科学与技术...
    • 1,576 篇 电气工程
    • 682 篇 信息与通信工程
    • 413 篇 控制科学与工程
    • 376 篇 软件工程
    • 265 篇 仪器科学与技术
    • 164 篇 生物医学工程(可授...
    • 161 篇 机械工程
    • 151 篇 测绘科学与技术
    • 139 篇 电子科学与技术(可...
    • 93 篇 石油与天然气工程
    • 76 篇 环境科学与工程(可...
    • 71 篇 动力工程及工程热...
    • 69 篇 交通运输工程
    • 67 篇 材料科学与工程(可...
    • 63 篇 土木工程
    • 58 篇 化学工程与技术
    • 58 篇 网络空间安全
    • 40 篇 生物工程
    • 34 篇 力学(可授工学、理...
  • 853 篇 理学
    • 284 篇 物理学
    • 245 篇 生物学
    • 148 篇 化学
    • 137 篇 地球物理学
    • 123 篇 数学
  • 542 篇 医学
    • 342 篇 临床医学
    • 123 篇 基础医学(可授医学...
    • 83 篇 特种医学
  • 365 篇 管理学
    • 309 篇 管理科学与工程(可...
    • 36 篇 图书情报与档案管...
  • 74 篇 农学
  • 21 篇 经济学
  • 19 篇 法学
  • 14 篇 艺术学
  • 13 篇 文学
  • 12 篇 教育学
  • 3 篇 哲学
  • 1 篇 军事学

主题

  • 4,258 篇 autoencoder
  • 1,038 篇 deep learning
  • 430 篇 anomaly detectio...
  • 364 篇 machine learning
  • 238 篇 feature extracti...
  • 154 篇 convolutional ne...
  • 152 篇 neural network
  • 152 篇 unsupervised lea...
  • 129 篇 neural networks
  • 109 篇 training
  • 108 篇 lstm
  • 105 篇 classification
  • 103 篇 dimensionality r...
  • 82 篇 cnn
  • 79 篇 representation l...
  • 79 篇 clustering
  • 78 篇 decoding
  • 77 篇 transfer learnin...
  • 77 篇 deep neural netw...
  • 68 篇 convolutional ne...

机构

  • 16 篇 univ chinese aca...
  • 10 篇 cent south univ ...
  • 10 篇 univ elect sci &...
  • 9 篇 chongqing univ c...
  • 9 篇 univ chinese aca...
  • 9 篇 northwestern pol...
  • 9 篇 iiit delhi new d...
  • 9 篇 nanyang technol ...
  • 8 篇 hong kong polyte...
  • 8 篇 cent south univ ...
  • 8 篇 tianjin univ col...
  • 8 篇 univ elect sci &...
  • 8 篇 korea adv inst s...
  • 8 篇 peng cheng lab p...
  • 7 篇 china univ geosc...
  • 7 篇 chinese acad sci...
  • 7 篇 harbin engn univ...
  • 7 篇 brno university ...
  • 6 篇 queens univ dept...
  • 6 篇 new jersey inst ...

作者

  • 20 篇 majumdar angshul
  • 13 篇 wang wei
  • 7 篇 zhang lin
  • 7 篇 zhang lei
  • 7 篇 wang jian
  • 7 篇 wang hao
  • 7 篇 liu li
  • 7 篇 li bin
  • 7 篇 kim jin-young
  • 7 篇 hoydis jakob
  • 7 篇 chen wei
  • 7 篇 cho sung-bae
  • 7 篇 gao lianru
  • 7 篇 zhang wei
  • 7 篇 guo lei
  • 6 篇 wang lei
  • 6 篇 li li
  • 6 篇 wang kai
  • 6 篇 li yuan
  • 6 篇 liu jie

语言

  • 4,094 篇 英文
  • 101 篇 其他
  • 34 篇 中文
  • 7 篇 法文
  • 6 篇 德文
  • 6 篇 土耳其文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 意大利文
  • 1 篇 日文
  • 1 篇 葡萄牙文
检索条件"主题词=Autoencoder"
4258 条 记 录,以下是591-600 订阅
排序:
autoencoder-based method for online fault detection in discrete-event class Production Systems
收藏 引用
IFAC-PapersOnLine 2024年 第1期58卷 228-233页
作者: Ramla Saddem Dylan Baptiste Ange Patrick Wabo Teingua CReSTIC University of Reims Champagne-Ardenne France
In the context of discrete-event systems (DES), the terms detection and diagnosis refer to two distinct stages of handling faults and anomalies. Both steps are critical for ensuring the reliable and safe operation of ... 详细信息
来源: 评论
autoencoder BASED GENERATOR FOR CREDIT INFORMATION RECOVERY OF RURAL BANKS
收藏 引用
INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING-THEORY APPLICATIONS AND PRACTICE 2023年 第2期30卷 326-335页
作者: Yan, Gujun Zhejiang Univ Inst Finance Hangzhou Peoples R China
By using machine learning algorithms, banks and other lending institutions can construct intelligent risk control models for loan businesses, which helps to overcome the disadvantages of traditional evaluation methods... 详细信息
来源: 评论
autoencoder-Based Unsupervised Surface Defect Detection Using Two-Stage Training
收藏 引用
JOURNAL OF IMAGING 2024年 第5期10卷 111-111页
作者: Shiferaw, Tesfaye Getachew Yao, Li Southeast Univ Sch Comp Sci & Engn Nanjing 211189 Peoples R China Southeast Univ Key Lab Comp Network & Informat Integrat Minist Educ Nanjing 211189 Peoples R China
Accurately detecting defects while reconstructing a high-quality normal background in surface defect detection using unsupervised methods remains a significant challenge. This study proposes an unsupervised method tha... 详细信息
来源: 评论
Mode shape prediction based on convolutional neural network and autoencoder
收藏 引用
STRUCTURES 2022年 40卷 127-137页
作者: Hu, Kejian Wu, Xiaoguang Changan Univ Highway Sch Xian 71000 Peoples R China
Mode shape is a dynamic characteristic that plays an important role in civil engineering. In this paper, an approach to predict the mode shape of a bridge is proposed using a convolutional neural network (CNN) and an ... 详细信息
来源: 评论
Semi-Federated Learning Based on autoencoder for Non-Intrusive Load Monitoring  23
Semi-Federated Learning Based on Autoencoder for Non-Intrusi...
收藏 引用
23rd IEEE International Conference on Communication Technology, ICCT 2023
作者: Bao, Chongyu Zhao, Haitao Li, Ruize Xia, Wenchao Nanjing University of Posts and Telecommunications Nanjing China
To addresses the challenges of data scarcity and weak computational capabilities of edge devices in the practical application of non-intrusive load monitoring (NILM) of power systems, we propose a semi-federated learn... 详细信息
来源: 评论
Identification of Stealthy Hardware Trojans through On-Chip Temperature Sensing and an autoencoder-Based Machine Learning Algorithm  66
Identification of Stealthy Hardware Trojans through On-Chip ...
收藏 引用
2023 IEEE 66th International Midwest Symposium on Circuits and Systems, MWSCAS 2023
作者: Gourousis, Thomas Zhang, Ziyue Yan, Mengting Zhang, Millin Mittal, Ankit Shrivastava, Aatmesh Restuccia, Francesco Fei, Yunsi Onabajo, Marvin Northeastern University Dept. of Electrical and Computer Engineering BostonMA United States
This paper presents an anomaly detection approach with non-invasive on-chip temperature sensing for hardware Trojan detection, which is coupled with a proposed anomaly detection technique using an autoencoder-based ma... 详细信息
来源: 评论
Object Attention autoencoder  9
Object Attention Autoencoder
收藏 引用
9th IEEE Smart World Congress, SWC 2023
作者: Bi, Yanqing Luo, Yu Wang, Zhenyu National University of Defense Technology College of Computer Changsha China
autoencoder (AE) networks are utilized in novelty detection, classification, and deep clustering tasks to learn feature representation. While AEs have demonstrated promising performance in various applications, we obs... 详细信息
来源: 评论
Pulsar candidate recognition based on autoencoder and self-normalizing neural networks  11
Pulsar candidate recognition based on autoencoder and self-n...
收藏 引用
11th Joint International Information Technology and Artificial Intelligence Conference, ITAIC 2023
作者: Wang, Zhihao Fu, Peng Guo, Meng Shandong Academy of Sciences Shandong Jinan250013 China Shandong Provincial Key Laboratory of Computer Networks Shandong Fundamental Research Center for Computer Science Shandong Jinan250013 China
The identification of pulsar candidates is a crucial step in radio astronomy research. With the continuous improvement of modern radio telescope equipment and the increasing scale of pulsar sky survey, a pulsar survey... 详细信息
来源: 评论
Abnormal condition monitoring method of cement pre-decomposition process based on PCA and autoencoder network  38
Abnormal condition monitoring method of cement pre-decomposi...
收藏 引用
38th Youth Academic Annual Conference of Chinese Association of Automation, YAC 2023
作者: Dong, Huijun Ma, Zongxian Lu, Shizeng Yu, Hongliang University of Jinan School of Electrical Engineering Jinan250022 China
The accurate monitoring of abnormal production conditions in cement process is the basis of intelligent control, which is of great significance to improve the intelligent level of cement production. In this paper, an ... 详细信息
来源: 评论
A Supervised autoencoder for Human Activity Recognition with Inertial Sensors
A Supervised Autoencoder for Human Activity Recognition with...
收藏 引用
2023 IEEE International Conference on Big Data, BigData 2023
作者: An, Jaehyuk Kwon, Younghoon Cho, Yoon-Sik Chung-Ang University Korea Republic of University of Washington United States
Human Activity Recognition (HAR) with inertial sensors is one of the most active research fields. Various machine learning algorithms have been proposed in HAR for classifying human activities. However, these methods ... 详细信息
来源: 评论