咨询与建议

限定检索结果

文献类型

  • 2,553 篇 期刊文献
  • 1,644 篇 会议
  • 51 篇 学位论文
  • 2 册 图书
  • 1 篇 资讯

馆藏范围

  • 4,251 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,895 篇 工学
    • 2,430 篇 计算机科学与技术...
    • 1,574 篇 电气工程
    • 678 篇 信息与通信工程
    • 413 篇 控制科学与工程
    • 376 篇 软件工程
    • 264 篇 仪器科学与技术
    • 164 篇 生物医学工程(可授...
    • 161 篇 机械工程
    • 151 篇 测绘科学与技术
    • 139 篇 电子科学与技术(可...
    • 93 篇 石油与天然气工程
    • 76 篇 环境科学与工程(可...
    • 71 篇 动力工程及工程热...
    • 69 篇 交通运输工程
    • 65 篇 材料科学与工程(可...
    • 62 篇 土木工程
    • 58 篇 化学工程与技术
    • 58 篇 网络空间安全
    • 40 篇 生物工程
    • 34 篇 力学(可授工学、理...
  • 850 篇 理学
    • 283 篇 物理学
    • 243 篇 生物学
    • 148 篇 化学
    • 137 篇 地球物理学
    • 123 篇 数学
  • 542 篇 医学
    • 342 篇 临床医学
    • 123 篇 基础医学(可授医学...
    • 83 篇 特种医学
  • 365 篇 管理学
    • 309 篇 管理科学与工程(可...
    • 36 篇 图书情报与档案管...
  • 74 篇 农学
  • 21 篇 经济学
  • 18 篇 法学
  • 14 篇 艺术学
  • 13 篇 文学
  • 11 篇 教育学
  • 3 篇 哲学
  • 1 篇 军事学

主题

  • 4,251 篇 autoencoder
  • 1,035 篇 deep learning
  • 430 篇 anomaly detectio...
  • 364 篇 machine learning
  • 236 篇 feature extracti...
  • 154 篇 convolutional ne...
  • 152 篇 neural network
  • 152 篇 unsupervised lea...
  • 129 篇 neural networks
  • 108 篇 lstm
  • 107 篇 training
  • 105 篇 classification
  • 103 篇 dimensionality r...
  • 82 篇 cnn
  • 79 篇 representation l...
  • 79 篇 clustering
  • 77 篇 transfer learnin...
  • 77 篇 decoding
  • 77 篇 deep neural netw...
  • 67 篇 convolutional ne...

机构

  • 16 篇 univ chinese aca...
  • 10 篇 cent south univ ...
  • 10 篇 univ elect sci &...
  • 9 篇 chongqing univ c...
  • 9 篇 univ chinese aca...
  • 9 篇 northwestern pol...
  • 9 篇 iiit delhi new d...
  • 9 篇 nanyang technol ...
  • 8 篇 hong kong polyte...
  • 8 篇 cent south univ ...
  • 8 篇 tianjin univ col...
  • 8 篇 univ elect sci &...
  • 8 篇 korea adv inst s...
  • 8 篇 peng cheng lab p...
  • 7 篇 china univ geosc...
  • 7 篇 chinese acad sci...
  • 7 篇 harbin engn univ...
  • 7 篇 brno university ...
  • 6 篇 queens univ dept...
  • 6 篇 new jersey inst ...

作者

  • 20 篇 majumdar angshul
  • 13 篇 wang wei
  • 7 篇 zhang lin
  • 7 篇 zhang lei
  • 7 篇 wang jian
  • 7 篇 wang hao
  • 7 篇 liu li
  • 7 篇 li bin
  • 7 篇 kim jin-young
  • 7 篇 hoydis jakob
  • 7 篇 chen wei
  • 7 篇 cho sung-bae
  • 7 篇 gao lianru
  • 7 篇 zhang wei
  • 7 篇 guo lei
  • 6 篇 wang lei
  • 6 篇 li li
  • 6 篇 wang kai
  • 6 篇 li yuan
  • 6 篇 liu jie

语言

  • 4,089 篇 英文
  • 101 篇 其他
  • 34 篇 中文
  • 7 篇 法文
  • 6 篇 德文
  • 6 篇 土耳其文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 意大利文
  • 1 篇 日文
  • 1 篇 葡萄牙文
检索条件"主题词=Autoencoder"
4251 条 记 录,以下是601-610 订阅
排序:
Practical Application of Deep Modified autoencoder Technique to Electricity Price Forecasting
Practical Application of Deep Modified Autoencoder Technique...
收藏 引用
2023 IEEE International Conference on Energy Technologies for Future Grids, ETFG 2023
作者: Yamada, Kodai Mori, Hiroyuki Tepco Power Grid Inc. Tokyo General Branch Tokyo Japan Meiji University Dept. of Network Design Tokyo Japan
This paper proposes a method for electricity price forecasting (EPF) with Deep Modified autoencoder (DMAE). It is based on a deep model of the modified autoencoder (MAE) that improves the learning process by adding no... 详细信息
来源: 评论
An Experimental Analysis of Lung Cancer Classification Based on autoencoder on CT Scan Images
An Experimental Analysis of Lung Cancer Classification Based...
收藏 引用
2023 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems, ICSES 2023
作者: Sivakumar, Shreya Govindaraj, Ramkumar Saveetha Institute of Medical and Technical Sciences Saveetha Medical College Chennai India Saveetha Institute of Medical and Technical Sciences Saveetha School of Engineering Department of ECE Chennai India
When it comes to medical picture recognition, convolutional neural networks are now the gold standard. The mistake in recreating the CT picture is responsible for the low overall accuracy in lung tumor prediction and ... 详细信息
来源: 评论
Spatiotemporal Stacked autoencoder based Soft Sensor Modeling for the Dow Data Challenge Problem  9
Spatiotemporal Stacked Autoencoder based Soft Sensor Modelin...
收藏 引用
9th IEEE Smart World Congress, SWC 2023
作者: Zhu, Xiuli Damarla, Seshu Kumar Huang, Biao University of Shanghai for Science and Technology Department of Optical-Electrical and Computer Engineering Shanghai China University of Alberta Department of Chemical and Materials Engineering AB Canada
Process data with characteristics such as strong nonlinearity, high dimensionality, cross-correlations and auto correlations pose a great challenge for data-driven soft sensor modeling. Albeit the conventional stacked... 详细信息
来源: 评论
Enhancing Drift Detection and Model Uncertainty Handling in Imbalanced Streaming Data using autoencoder-based Approach  2
Enhancing Drift Detection and Model Uncertainty Handling in ...
收藏 引用
2nd International Conference on Smart Technologies for Smart Nation, SmartTechCon 2023
作者: Suryawanshi, Shubhangi Goswami, Anurag Patil, Pramod Bennett University Greater Noida India Dr. D. Y. Patil Institute of Technology Pune India
In today’s digital era, numerous applications are generating data in the form of data stream. The data streams are a continuous massive amount of data generated in real-time. Handling the data streams in real-time en... 详细信息
来源: 评论
An autoencoder-based Spiking Representation for Images  2
An Autoencoder-based Spiking Representation for Images
收藏 引用
2nd International Conference on Image Processing, Computer Vision and Machine Learning, ICICML 2023
作者: Zhan, Qiugang Tao, Ran Wei, Ru Jiang, Anning University of Electronic Science and Technology of China School of Computer Science and Engineering Chengdu China Southwestern University of Finance and Economics School of Computing and Artificial Intelligence Chengdu China
autoencoders effectively extract low-dimensional features in artificial neural networks (ANNs) but remain scarcely explored for spiking neural networks (SNNs) which enable low-power hardware implementation. This paper... 详细信息
来源: 评论
Automobile Theft Detection by Driving Behavior Identification Using Deep autoencoder
Automobile Theft Detection by Driving Behavior Identificatio...
收藏 引用
1st International Conference on Security and Information Technologies with AI, Internet Computing, and Big data Applications (SITAIBA)
作者: Kristianto, Edy Lin, Po-Ching Natl Chung Cheng Univ Dept Comp Sci & Informat Engn Chiayi Minhsiung Taiwan
Modern vehicles consist of an on-board detection unit that can record a driver's driving behavior. Detecting anomaly in the driving behavior can be used for theft detection. There are many supervised learning mode... 详细信息
来源: 评论
autoencoder-based anomaly root cause analysis for wind turbines
收藏 引用
Energy and AI 2021年 第2期4卷 57-65页
作者: Cyriana M.A.Roelofs Marc-Alexander Lutz Stefan Faulstich Stephan Vogt Fraunhofer IEE Konigstor 59Kassel 34119Germany Intelligent Embedded Systems Universitat KasselWilhelmshoher Allee 67Kassel 34121Germany
A popular method to detect anomalous behaviour or specific failures in wind turbine sensor data uses a specific type of neural network called an *** models have proven to be very successful in detecting such deviation... 详细信息
来源: 评论
autoencoder and CNN for Content-based Retrieval of Multimodal Medical Images
收藏 引用
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS 2024年 第4期15卷 281-290页
作者: Suresh, Kumar J. S. Maria, Celestin Vigila S. Noorul Islam Ctr Higher Educ Dept Comp Sci & Engn Kanyakumari Tamil Nadu India Noorul Islam Ctr Higher Educ Dept Informat Technol Kanyakumari Tamil Nadu India
Content-Based Medical Image Retrieval (CBMIR) is a widely adopted approach for retrieving related images by the comparison inherent features present in the input image to those stored in the database. However, the dom... 详细信息
来源: 评论
autoencoder-based 3D representation learning for industrial seedling abnormality detection
收藏 引用
COMPUTERS AND ELECTRONICS IN AGRICULTURE 2023年 第1期206卷
作者: de Villiers, Hendrik A. C. Otten, Gerwoud Chauhan, Aneesh Meesters, Lydia Wageningen Univ & Res Food & Biobased Res Bornse Weilanden 9 NL-6708 WG Wageningen Netherlands
Industrial seedling quality assessment, such as attempting to find abnormal seedlings, is a challenging task where assessment methods must contend with the natural variability of seedlings, as well as the subjective n... 详细信息
来源: 评论
End-to-End Learning Based Symbol-to-Symbol autoencoder for G-band Fiber-Terahertz integrated Communication System
End-to-End Learning Based Symbol-to-Symbol Autoencoder for G...
收藏 引用
2023 Asia Communications and Photonics Conference/2023 International Photonics and Optoelectronics Meetings, ACP/POEM 2023
作者: Huang, Changle Li, Zhongya Jia, Junlian Xing, Size Wang, Chengxi Dong, Boyu Shi, Jianyang Chi, Nan Zhang, Junwen Shanghai China Shanghai China
Fiber-terahertz integrated communication system has emerged as a promising technology for 6G. In this paper, an end-to-end learning-based quadrature amplitude modulation (QAM) symbol-to-symbol autoencoder frame work i... 详细信息
来源: 评论