咨询与建议

限定检索结果

文献类型

  • 2,553 篇 期刊文献
  • 1,644 篇 会议
  • 51 篇 学位论文
  • 2 册 图书
  • 1 篇 资讯

馆藏范围

  • 4,251 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,897 篇 工学
    • 2,430 篇 计算机科学与技术...
    • 1,574 篇 电气工程
    • 679 篇 信息与通信工程
    • 414 篇 控制科学与工程
    • 376 篇 软件工程
    • 265 篇 仪器科学与技术
    • 164 篇 生物医学工程(可授...
    • 161 篇 机械工程
    • 151 篇 测绘科学与技术
    • 139 篇 电子科学与技术(可...
    • 93 篇 石油与天然气工程
    • 76 篇 环境科学与工程(可...
    • 71 篇 动力工程及工程热...
    • 69 篇 交通运输工程
    • 65 篇 材料科学与工程(可...
    • 64 篇 土木工程
    • 59 篇 网络空间安全
    • 58 篇 化学工程与技术
    • 40 篇 生物工程
    • 35 篇 力学(可授工学、理...
  • 853 篇 理学
    • 284 篇 物理学
    • 245 篇 生物学
    • 148 篇 化学
    • 137 篇 地球物理学
    • 124 篇 数学
  • 542 篇 医学
    • 342 篇 临床医学
    • 123 篇 基础医学(可授医学...
    • 83 篇 特种医学
  • 365 篇 管理学
    • 309 篇 管理科学与工程(可...
    • 36 篇 图书情报与档案管...
  • 74 篇 农学
  • 21 篇 经济学
  • 18 篇 法学
  • 14 篇 艺术学
  • 13 篇 文学
  • 12 篇 教育学
  • 3 篇 哲学
  • 1 篇 军事学

主题

  • 4,251 篇 autoencoder
  • 1,035 篇 deep learning
  • 430 篇 anomaly detectio...
  • 364 篇 machine learning
  • 236 篇 feature extracti...
  • 154 篇 convolutional ne...
  • 152 篇 neural network
  • 152 篇 unsupervised lea...
  • 129 篇 neural networks
  • 108 篇 lstm
  • 107 篇 training
  • 105 篇 classification
  • 103 篇 dimensionality r...
  • 82 篇 cnn
  • 79 篇 representation l...
  • 79 篇 clustering
  • 77 篇 transfer learnin...
  • 77 篇 decoding
  • 77 篇 deep neural netw...
  • 67 篇 convolutional ne...

机构

  • 16 篇 univ chinese aca...
  • 10 篇 cent south univ ...
  • 10 篇 univ elect sci &...
  • 9 篇 chongqing univ c...
  • 9 篇 univ chinese aca...
  • 9 篇 northwestern pol...
  • 9 篇 iiit delhi new d...
  • 9 篇 nanyang technol ...
  • 8 篇 hong kong polyte...
  • 8 篇 cent south univ ...
  • 8 篇 tianjin univ col...
  • 8 篇 univ elect sci &...
  • 8 篇 korea adv inst s...
  • 8 篇 peng cheng lab p...
  • 7 篇 china univ geosc...
  • 7 篇 chinese acad sci...
  • 7 篇 harbin engn univ...
  • 7 篇 brno university ...
  • 6 篇 queens univ dept...
  • 6 篇 new jersey inst ...

作者

  • 20 篇 majumdar angshul
  • 13 篇 wang wei
  • 7 篇 zhang lin
  • 7 篇 zhang lei
  • 7 篇 wang jian
  • 7 篇 wang hao
  • 7 篇 liu li
  • 7 篇 li bin
  • 7 篇 kim jin-young
  • 7 篇 hoydis jakob
  • 7 篇 chen wei
  • 7 篇 cho sung-bae
  • 7 篇 gao lianru
  • 7 篇 zhang wei
  • 7 篇 guo lei
  • 6 篇 wang lei
  • 6 篇 li li
  • 6 篇 wang kai
  • 6 篇 li yuan
  • 6 篇 liu jie

语言

  • 4,087 篇 英文
  • 101 篇 其他
  • 34 篇 中文
  • 7 篇 法文
  • 6 篇 德文
  • 6 篇 土耳其文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 意大利文
  • 1 篇 日文
  • 1 篇 葡萄牙文
检索条件"主题词=Autoencoder"
4251 条 记 录,以下是671-680 订阅
排序:
Classification of Lower Limb Electromyographical Signals Based on autoencoder Deep Neural Network Transfer Learning  10
Classification of Lower Limb Electromyographical Signals Bas...
收藏 引用
10th RSI International Conference on Robotics and Mechatronics (ICRoM)
作者: Daryakenari, F. H. Mollahossein, M. Taheri, A. Vossoughi, G. R. Sharif Univ Technol Dept Mech Engn Mech Res Lab Ctr Excellence Design Robot & Automat Tehran Iran
In this paper we aim to propose an Artificial Neural Network (ANN) model in order to classify lower limb surface Electromyographical signals, without applying any pre-processing to the inputs. To this end, first three... 详细信息
来源: 评论
Evolutive Adversarially-Trained Bayesian Network autoencoder for Interpretable Anomaly Detection  11
Evolutive Adversarially-Trained Bayesian Network Autoencoder...
收藏 引用
International Conference on Probabilistic Graphical Models
作者: Casajus-Setien, Jorge Bielza, Concha Larranaga, Pedro Univ Politecn Madrid ETS Ingenieros Informat Boadilla Del Monte 28660 Spain
Semi-supervised detection of outliers with only positive and unlabeled data, which is among the most frequent forms of the anomaly detection (AD) problem in real scenarios, requires for a model to capture the normal b... 详细信息
来源: 评论
Unsupervised Anomaly Detection and Root Cause Analysis for an Industrial Press Machine based on Skip-Connected autoencoder  21
Unsupervised Anomaly Detection and Root Cause Analysis for a...
收藏 引用
21st IEEE International Conference on Machine Learning and Applications (IEEE ICMLA)
作者: Sun, Chenwei Trat, Martin Bender, Janek Ovtcharova, Jivka Jeppesen, George Baer, Jan FZI Res Ctr Informat Technol Intelligent Syst & Prod Engn Karlsruhe Germany Dieffenbacher GmbH Maschinen & Anlagenbau Eppingen Germany
We propose an unsupervised-learning-based method for anomaly detection and root cause analysis for an industrial press machine. A skip-connected autoencoder with 55% performance improvement measured by reconstruction ... 详细信息
来源: 评论
A Deep Convolutional autoencoder-Based Approach for Parkinson's Disease Diagnosis Through Speech Signals  18th
A Deep Convolutional Autoencoder-Based Approach for Parkinso...
收藏 引用
18th International Conference on Advanced Data Mining and Applications (ADMA)
作者: Khaskhoussy, Rania Ben Ayed, Yassine Univ Sfax Natl Engn Sch Sfax ENIS MIRACL Multimedia Informat Syst & Adv Comp Lab BP 1173 Sfax 3038 Tunisia
Parkinson's Disease (PD) is a neurodegenerative disease that primarily manifests through cognitive, motor and speech disorders. But it has been proven that voice changes in Parkinson's patients are among the s... 详细信息
来源: 评论
HEAD-RELATED TRANSFER FUNCTION INTERPOLATION FROM SPATIALLY SPARSE MEASUREMENTS USING autoencoder WITH SOURCE POSITION CONDITIONING  17
HEAD-RELATED TRANSFER FUNCTION INTERPOLATION FROM SPATIALLY ...
收藏 引用
17th International Workshop on Acoustic Signal Enhancement (IWAENC)
作者: Ito, Yuki Nakamura, Tomohiko Koyama, Shoichi Saruwatari, Hiroshi Univ Tokyo Grad Sch Informat Sci & Technol Bunkyo Ku 7-3-1 Hongo Tokyo 1138656 Japan
We propose a method of head-related transfer function (HRTF) interpolation from sparsely measured HRTFs using an autoencoder with source position conditioning. The proposed method is drawn from an analogy between an H... 详细信息
来源: 评论
Channel Prediction over Irregular Terrains: Deep autoencoder with Random Forest  23
Channel Prediction over Irregular Terrains: Deep Autoencoder...
收藏 引用
23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)
作者: Wang, Yuyang Iyer, Shiva R. Chizhik, Dmitry Du, Jinfeng Valenzuela, Reinaldo UT Austin Austin TX 78712 USA NYU Brooklyn NY USA Nokia Bell Labs Murray Hill NJ USA
Channel modeling is critical for coverage prediction, system level simulations, and wireless propagation characterization. Industry practice applies linear fit to the pathloss in decibels against the logarithm of the ... 详细信息
来源: 评论
NiaNet: A framework for constructing autoencoder architectures using nature-inspired algorithms  17
NiaNet: A framework for constructing Autoencoder architectur...
收藏 引用
17th Conference on Computer Science and Intelligence Systems (FedCSIS)
作者: Pavlic, Saso Karakatic, Saso Fister, Iztok, Jr. Univ Maribor Fac Elect Engn & Comp Sci Koroska Cesta 46 SLO-2000 Maribor Slovenia
autoencoder, an hourly glass-shaped deep neural network capable of learning data representation in a lower dimension, has performed well in various applications. However, developing a high-quality AE system for a spec... 详细信息
来源: 评论
Advanced Flame front Detection in Combustion Processes Using autoencoder Approach
收藏 引用
ENERGIES 2024年 第7期17卷 1759页
作者: Ricci, Federico Mariani, Francesco Univ Perugia Engn Dept Via Goffredo Duranti 93 I-06125 Perugia Italy
This research explores the detection of flame front evolution in spark-ignition engines using an innovative neural network, the autoencoder. High-speed camera images from an optical access engine were analyzed under d... 详细信息
来源: 评论
Rapid scanning method for SICM based on autoencoder network
收藏 引用
MICRON 2024年 177卷 103579页
作者: Wu, Wenlin Liao, Xiaobo Wang, Lei Chen, Siyu Zhuang, Jian Zheng, Qiangqiang Southwest Univ Sci & Technol Key Lab Testing Technol Mfg Proc Minist Educ Mianyang 621010 Peoples R China Xi An Jiao Tong Univ Sch Mech Engn Xian 710049 Peoples R China
Scanning Ion Conductance Microscopy (SICM) enables non-destructive imaging of living cells, which makes it highly valuable in life sciences, medicine, pharmacology, and many other fields. However, because of the uncer... 详细信息
来源: 评论
TRANSFERABILITY OF CONVOLUTIONAL autoencoder MODEL FOR LOSSY COMPRESSION TO UNKNOWN HYPERSPECTRAL PRISMA DATA  12
TRANSFERABILITY OF CONVOLUTIONAL AUTOENCODER MODEL FOR LOSSY...
收藏 引用
12th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS)
作者: Kuester, Jannick Gross, Wolfgang Schreiner, Simon Heizmann, Michael Middelmann, Wolfgang Fraunhofer IOSB Fraunhofer Ctr Machine Learning Ettlingen Germany Karlsruhe Inst Technol KIT Inst Ind Informat Technol IIIT Karlsruhe Germany
This work addresses the challenge of the portability of autoencoder models for the lossy compression of different spatially independent and unknown hyperspectral satellite data. We propose an advanced 1D-Convolutional... 详细信息
来源: 评论