咨询与建议

限定检索结果

文献类型

  • 47 篇 期刊文献
  • 19 篇 会议

馆藏范围

  • 66 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 62 篇 工学
    • 28 篇 电气工程
    • 28 篇 计算机科学与技术...
    • 15 篇 测绘科学与技术
    • 13 篇 信息与通信工程
    • 6 篇 仪器科学与技术
    • 5 篇 控制科学与工程
    • 4 篇 环境科学与工程(可...
    • 4 篇 软件工程
    • 3 篇 机械工程
    • 3 篇 生物医学工程(可授...
    • 3 篇 网络空间安全
    • 2 篇 动力工程及工程热...
    • 2 篇 电子科学与技术(可...
    • 2 篇 石油与天然气工程
    • 1 篇 光学工程
    • 1 篇 交通运输工程
    • 1 篇 林业工程
    • 1 篇 安全科学与工程
  • 26 篇 理学
    • 15 篇 地球物理学
    • 6 篇 生物学
    • 4 篇 地理学
    • 3 篇 物理学
    • 2 篇 数学
    • 1 篇 化学
    • 1 篇 大气科学
    • 1 篇 统计学(可授理学、...
  • 19 篇 医学
    • 16 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 7 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 3 篇 农学
    • 1 篇 林学

主题

  • 66 篇 autoencoder netw...
  • 17 篇 deep learning
  • 9 篇 hyperspectral un...
  • 7 篇 feature extracti...
  • 7 篇 training
  • 6 篇 decoding
  • 5 篇 anomaly detectio...
  • 5 篇 hyperspectral im...
  • 4 篇 task analysis
  • 3 篇 quality assessme...
  • 3 篇 image reconstruc...
  • 2 篇 ai
  • 2 篇 neural networks
  • 2 篇 convolution
  • 2 篇 hyperspectral un...
  • 2 篇 unsupervised mac...
  • 2 篇 intrusion detect...
  • 2 篇 image denoising
  • 2 篇 machine learning
  • 2 篇 correlation

机构

  • 3 篇 northwestern pol...
  • 3 篇 nanjing univ sci...
  • 2 篇 aswan univ dept ...
  • 2 篇 indian inst tech...
  • 2 篇 beijing normal u...
  • 2 篇 minist ind & inf...
  • 2 篇 xidian univ sch ...
  • 1 篇 xidian univ sch ...
  • 1 篇 qingdao univ sci...
  • 1 篇 univ lubeck inst...
  • 1 篇 univ al qadisiya...
  • 1 篇 zhongtong bus ho...
  • 1 篇 beijing inst rem...
  • 1 篇 south china univ...
  • 1 篇 harbin inst tech...
  • 1 篇 univ sci & techn...
  • 1 篇 xidian univ key ...
  • 1 篇 tsinghua univ be...
  • 1 篇 chennai 602 105
  • 1 篇 hebei normal uni...

作者

  • 3 篇 rashwan hatem a.
  • 3 篇 khalid saif
  • 3 篇 liu hongyi
  • 3 篇 puig domenec
  • 3 篇 zhao min
  • 3 篇 chen jie
  • 3 篇 abdulwahab sadda...
  • 2 篇 zhao zhengang
  • 2 篇 yu xianchuan
  • 2 篇 zhang xiaohua
  • 2 篇 abdel-nasser moh...
  • 2 篇 rahardja susanto
  • 2 篇 singh sanasam ra...
  • 2 篇 nandi sukumar
  • 2 篇 jiao licheng
  • 2 篇 wang hao
  • 2 篇 meng hongyun
  • 2 篇 yu bin
  • 2 篇 ratti ritesh
  • 2 篇 zhang jun

语言

  • 62 篇 英文
  • 3 篇 其他
检索条件"主题词=Autoencoder Network"
66 条 记 录,以下是41-50 订阅
排序:
A Review of Abnormal Personnel Behavior Detection Based on Deep Learning  29
A Review of Abnormal Personnel Behavior Detection Based on D...
收藏 引用
29th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)
作者: Shi Jinfei Zhang Tianqi He Guanghong Hao Fei Nanjing Inst Technol Kangni Ind Technol Res Inst Nanjing Peoples R China Nanjing Inst Technol Sch Mech Engn Nanjing Peoples R China
With the increasing demand for intelligent security on various occasions, the detection of personnel behavior in a variety of environments has become a current research hotspot through new detection methods. Based on ... 详细信息
来源: 评论
Optimization Strategies for the k-Nearest Neighbor Classifier
收藏 引用
SN Computer Science 2023年 第1期4卷 47页
作者: Yepdjio Nkouanga, Hermann Vajda, Szilárd Department of Computer Science Portland State University 1825 SW Broadway Portland 97201 OR United States Department of Computer Science Central Washington University 400 University Way Ellensburg 98926 WA United States
In this paper, we propose six (6) fast and efficient classification schemes for different type of images (digits, objects, characters) using the classical k-nearest neighbor (kNN) classifier. It is common knowledge th... 详细信息
来源: 评论
A simple yet efficient unsupervised anomaly detection network for industrial machine  6
A simple yet efficient unsupervised anomaly detection networ...
收藏 引用
6th IEEE International Conference on Automation, Electronics and Electrical Engineering, AUTEEE 2023
作者: Wu, Danxuan Chen, Qijun Tongji University Shanghai China
Anomaly detection, aiming to detect items, events, or observations that do not match expected patterns or other items in a data set, is a crucial problem in many fields such as network intrusion detection, fraud detec... 详细信息
来源: 评论
Organic and Recyclable Waste Classification Using Integrated Feature Selection Method
Organic and Recyclable Waste Classification Using Integrated...
收藏 引用
2023 IEEE International Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and Telecommunication Engineering, RMKMATE 2023
作者: Vijayaraj, A. Shreya, S. Deepana, G. Senthilvel, P. Gururama Jebakumar, R. Department of IT R.M.K Engineering College RSM Nagar Kavaraipettai Chennai601 206 India Department of Civil Engineering S.A. Engineering College Thiruverkadu Chennai600077 India Chennai602 105 India Department of Computing Technologies School of Computing SRM Institute of Science and Technology SRM Institute of Science and Technology Kattankulathur Chennai India
This paper suggests a new approach to enhancing waste classification performance using deep learning algorithms. Specifically, the proposed approach integrates an autoencoder network with a feature selection method in... 详细信息
来源: 评论
An autoencoder-based model for forest disturbance detection using Landsat time series data
收藏 引用
International Journal of Digital Earth 2021年 第9期14卷 1087-1102页
作者: Gaoxiang Zhou Ming Liu Xiangnan Liu Department of Information and Engineering Engineering University of People’s Armed PoliceXi’anPeople’s Republic of China School of Land Engineering Chang’An UniversityXi’anPeople’s Republic of China School of Information and Engineering China University of GeosciencesBeijingPeople’s Republic of China
Monitoring and classifying disturbed forests can provide information support for not only sustainable forest management but also global carbon sequestration *** this study,we propose an autoencoder-based model for for... 详细信息
来源: 评论
Self-Supervised DEnoising UltraSound network (DEUS-Net)
收藏 引用
IFAC-PapersOnLine 2024年 第24期58卷 614-619页
作者: Christian Janorschke Jan Meyer Daniel Wulff
Ultrasound is one of the most widespread technologies for medical imaging. This is due to its many benefits, like being non-invasive, radiation free and portable. However, one of the biggest challenges for ultrasound ... 详细信息
来源: 评论
Functional connectome fingerprinting: Identifying individuals and predicting cognitive functions via autoencoder
收藏 引用
HUMAN BRAIN MAPPING 2021年 第9期42卷 2691-2705页
作者: Cai, Biao Zhang, Gemeng Zhang, Aiying Xiao, Li Hu, Wenxing Stephen, Julia M. Wilson, Tony W. Calhoun, Vince D. Wang, Yu-Ping Tulane Univ Biomed Engn Dept New Orleans LA 70118 USA Mind Res Network Albuquerque NM USA Univ Nebraska Med Ctr UNMC Dept Neurol Sci Omaha NE 68182 USA Emory Univ Georgia Inst Technol Georgia State Univ Triinst Ctr Translat Res Neuroimaging & Data Sci Atlanta GA USA
Functional network connectivity has been widely acknowledged to characterize brain functions, which can be regarded as "brain fingerprinting" to identify an individual from a pool of subjects. Both common an... 详细信息
来源: 评论
Deep Monocular Depth Estimation Based on Content and Contextual Features
收藏 引用
SENSORS 2023年 第6期23卷 2919-2919页
作者: Abdulwahab, Saddam Rashwan, Hatem A. Sharaf, Najwa Khalid, Saif Puig, Domenec Univ Rovira & Virgil Dept Comp Engn & Math Campus SesceladesAvinguda dels Paisos Catalans 26 Tarragona 43007 Spain
Recently, significant progress has been achieved in developing deep learning-based approaches for estimating depth maps from monocular images. However, many existing methods rely on content and structure information e... 详细信息
来源: 评论
Extended-Aggregated Strategy for Hyperspectral Unmixing Based on Dilated Convolution
收藏 引用
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 2023年 20卷 1页
作者: Gao, Yuyou Pan, Bin Song, Xinyu Xu, Xia Nankai Univ Sch Stat & Data Sci KLMDASR LEBPS Tianjin 300071 Peoples R China Nankai Univ LPMC Tianjin 300071 Peoples R China Nankai Univ Coll Comp Sci Tianjin 300071 Peoples R China
autoencoder unmixing is a popular deep learning-based spectral unmixing algorithm, which decomposes the mixed pixels into pure endmembers and their fractional proportions, but the existing methods cannot fully exploit... 详细信息
来源: 评论
Deep Learning Framework Applied For Predicting Anomaly of Respiratory Sounds
Deep Learning Framework Applied For Predicting Anomaly of Re...
收藏 引用
International Symposium on Electrical and Electronics Engineering (ISEE)
作者: Dat Ngo Lam Pham Anh Nguyen Ben Phan Khoa Tran Truong Nguyen VNU HCM HCMUT Dept Elect & Elect Engn Ho Chi Minh City Vietnam UT DUT Dept Elect & Elect Engn Da Nang City Vietnam
This paper proposes a robust deep learning framework used for classifying anomaly of respiratory cycles. Initially, our framework starts with front-end feature extraction step. This step aims to transform the respirat... 详细信息
来源: 评论