咨询与建议

限定检索结果

文献类型

  • 11 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 19 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 16 篇 工学
    • 15 篇 计算机科学与技术...
    • 3 篇 控制科学与工程
    • 2 篇 软件工程
    • 1 篇 电气工程
  • 7 篇 理学
    • 7 篇 数学
    • 1 篇 生物学
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 1 篇 医学
    • 1 篇 特种医学
    • 1 篇 医学技术(可授医学...

主题

  • 19 篇 automated algori...
  • 2 篇 algorithm select...
  • 2 篇 automated algori...
  • 2 篇 black-box optimi...
  • 2 篇 machine learning
  • 2 篇 parameter tuning
  • 2 篇 data-driven algo...
  • 2 篇 exploratory land...
  • 1 篇 data-driven opti...
  • 1 篇 automated negoti...
  • 1 篇 hyperparameter o...
  • 1 篇 machine learning...
  • 1 篇 metaheuristics
  • 1 篇 smac
  • 1 篇 deep learning
  • 1 篇 stream clusterin...
  • 1 篇 probabilistic ne...
  • 1 篇 mixed integer pr...
  • 1 篇 neural network v...
  • 1 篇 empirical analys...

机构

  • 2 篇 leiden univ liac...
  • 1 篇 univ libre bruxe...
  • 1 篇 univ adelaide op...
  • 1 篇 univ texas el pa...
  • 1 篇 univ tecn federi...
  • 1 篇 univ munster inf...
  • 1 篇 leiden univ leid...
  • 1 篇 department of co...
  • 1 篇 amrita vishwa vi...
  • 1 篇 pontificia univ ...
  • 1 篇 leiden institute...
  • 1 篇 department of co...
  • 1 篇 univ munster mun...
  • 1 篇 univ british col...
  • 1 篇 univ british col...
  • 1 篇 leiden univ liac...
  • 1 篇 university of st...
  • 1 篇 ocean genom inc ...
  • 1 篇 delft university...
  • 1 篇 thales res & tec...

作者

  • 5 篇 hoos holger h.
  • 3 篇 trautmann heike
  • 2 篇 doerr carola
  • 2 篇 kerschke pascal
  • 1 篇 neumann frank
  • 1 篇 montero elizabet...
  • 1 篇 kingsford carl
  • 1 篇 van rijn jan n.
  • 1 篇 holger h. hoos
  • 1 篇 dick travis
  • 1 篇 renau quentin
  • 1 篇 dunke fabian
  • 1 篇 deblasio dan
  • 1 篇 yuan zhi
  • 1 篇 lopez-ibanez man...
  • 1 篇 back thomas
  • 1 篇 pushak yasha
  • 1 篇 dreo johann
  • 1 篇 bertsch valentin
  • 1 篇 seiler moritz vi...

语言

  • 19 篇 英文
检索条件"主题词=Automated Algorithm Configuration"
19 条 记 录,以下是1-10 订阅
Improving the computational efficiency of stochastic programs using automated algorithm configuration: an application to decentralized energy systems
收藏 引用
Annals of Operations Research 2019年 1-22页
作者: Schwarz, Hannes Kotthoff, Lars Hoos, Holger Fichtner, Wolf Bertsch, Valentin Chair of Energy Economics Institute for Industrial Production (IIP) Karlsruhe Institute of Technology (KIT) Hertzstraße 16 Karlsruhe 76187 Germany Department of Computer Science University of Wyoming Laramie WY United States Leiden Institute of Advanced Computer Science (LIACS) Universiteit Leiden Leiden Netherlands Department of Computer Science University of British Columbia (UBC) Vancouver BC Canada Economic and Social Research Institute (ESRI) Dublin Ireland Department of Economics Trinity College Dublin Dublin Ireland Department of Energy Systems Analysis German Aerospace Center (DLR) Stuttgart Germany University of Stuttgart Stuttgart Germany
The optimization of decentralized energy systems is an important practical problem that can be modeled using stochastic programs and solved via their large-scale, deterministic-equivalent formulations. Unfortunately, ... 详细信息
来源: 评论
A Grammatical Evolution Based automated configuration of an Ensemble Differential Evolution algorithm  10th
A Grammatical Evolution Based Automated Configuration of an ...
收藏 引用
10th Biennial International Conference on Pattern Recognition and Machine Intelligence (PReMI)
作者: Indu, M. T. Velayutham, C. Shunmuga Amrita Vishwa Vidyapeetham Amrita Sch Comp Dept Comp Sci & Engn Coimbatore Tamil Nadu India
Designing/configuring ensemble Differential Evolution (DE) algorithms with complementary search characteristics is a complex problem requiring both in-depth understanding of the constituent algorithm's dynamics an... 详细信息
来源: 评论
Learn to optimize——a brief overview
收藏 引用
National Science Review 2024年 第8期11卷 39-47页
作者: Ke Tang Xin Yao Department of Computer Science and Engineering Southern University of Science and Technology Department of Computing and Decision Sciences Lingnan University
Most optimization problems of practical significance are typically solved by highly configurable parameterized *** achieve the best performance on a problem instance,a trial-and-error configuration process is required... 详细信息
来源: 评论
Speeding up neural network robustness verification via algorithm configuration and an optimised mixed integer linear programming solver portfolio
收藏 引用
MACHINE LEARNING 2022年 第12期111卷 4565-4584页
作者: Konig, Matthias Hoos, Holger H. van Rijn, Jan N. Leiden Univ Leiden Inst Adv Comp Sci Leiden Netherlands Univ British Columbia Vancouver BC Canada
Despite their great success in recent years, neural networks have been found to be vulnerable to adversarial attacks. These attacks are often based on slight perturbations of given inputs that cause them to be misclas... 详细信息
来源: 评论
algorithm configuration via Continuously Racing: Preliminary Results
Algorithm Configuration via Continuously Racing: Preliminary...
收藏 引用
Genetic and Evolutionary Computation Conference (GECCO)
作者: Xiao, Yunshuang Perez Caceres, Leslie Lopez-Ibanez, Manuel Stutzle, Thomas Univ Libre Bruxellles IRIDIA Brussels Belgium Pontificia Univ Catolica Valparaiso Valparaiso Chile Univ Manchester Manchester Lancs England
Automatic algorithm configuration procedures aim at supporting the design and application of optimization algorithms by providing specialized tools to automatically adjust their parameters to use the available computa... 详细信息
来源: 评论
automated configuration of Genetic algorithms by Tuning for Anytime Performance Hot-off-the-Press Track at GECCCO 2022  22
Automated Configuration of Genetic Algorithms by Tuning for ...
收藏 引用
Genetic and Evolutionary Computation Conference (GECCO)
作者: Ye, Furong Doerr, Carola Wang, Hao Back, Thomas Leiden Univ LIACS Leiden Netherlands Sorbonne Univ CNRS LIP6 Paris France
This paper summarizes our work "automated configuration of Genetic algorithms by Tuning for Anytime Performance", to appear in IEEE Transactions on Evolutionary Computation. Finding the best configuration of... 详细信息
来源: 评论
A data-driven methodology for the automated configuration of online algorithms
收藏 引用
DECISION SUPPORT SYSTEMS 2020年 137卷 113343-113343页
作者: Dunke, Fabian Nickel, Stefan Karlsruhe Inst Technol Inst Operat Res Discrete Optimizat & Logist Kaiserstr 12 D-76131 Karlsruhe Germany
With the goal of devising algorithms for decision support in operational tasks, we introduce a new methodology for the automated configuration of algorithms for combinatorial online optimization problems. The procedur... 详细信息
来源: 评论
Towards Feature-Free automated algorithm Selection for Single-Objective Continuous Black-Box Optimization
Towards Feature-Free Automated Algorithm Selection for Singl...
收藏 引用
IEEE Symposium Series on Computational Intelligence (IEEE SSCI)
作者: Prager, Raphael Patrick Seiler, Moritz Vinzent Trautmann, Heike Kerschke, Pascal Univ Munster Stat & Optimizat Munster Germany Tech Univ Dresden Big Data Analyt Transportat Dresden Germany
We propose a novel method for automated algorithm selection in the domain of single-objective continuous black-box optimization. In contrast to existing methods, we use convolutional neural networks as the selection a... 详细信息
来源: 评论
How Much Data Is Sufficient to Learn High-Performing algorithms? Generalization Guarantees for Data-Driven algorithm Design  2021
How Much Data Is Sufficient to Learn High-Performing Algorit...
收藏 引用
53rd Annual ACM SIGACT Symposium on Theory of Computing (STOC)
作者: Balcan, Maria-Florina DeBlasio, Dan Dick, Travis Kingsford, Carl Sandholm, Tuomas Vitercik, Ellen Carnegie Mellon Univ Pittsburgh PA 15213 USA Univ Texas El Paso El Paso TX 79968 USA Univ Penn Philadelphia PA 19104 USA Ocean Genom Inc Pittsburgh PA USA Strateg Machine Inc Pittsburgh PA USA Strategy Robot Inc Pittsburgh PA USA Optimized Markets Inc Pittsburgh PA USA
algorithms often have tunable parameters that impact performance metrics such as runtime and solution quality. For many algorithms used in practice, no parameter settings admit meaningful worst-case bounds, so the par... 详细信息
来源: 评论
Exact stochastic constraint optimisation with applications in network analysis
收藏 引用
ARTIFICIAL INTELLIGENCE 2022年 304卷 103650-103650页
作者: Latour, Anna L. D. Babaki, Behrouz Fokkinga, Daniel Anastacio, Marie H. Hoos, Holger H. Nijssen, Siegfried Leiden Univ LIACS POB 9512 NL-2300 RA Leiden Netherlands Polytech Montreal Montreal PQ H3T 1J4 Canada Univ British Columbia Vancouver BC V6T 1Z4 Canada UCLouvain ICTEAM Pl St Barbe 2Bte L5-02-01 B-1348 Louvain La Neuve Belgium
We present an extensive study of methods for exactly solving stochastic constraint (optimisation) problems (SCPs) in network analysis. These problems are prevalent in science, governance and industry. The first method... 详细信息
来源: 评论