咨询与建议

限定检索结果

文献类型

  • 8 篇 期刊文献
  • 5 篇 会议

馆藏范围

  • 13 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 13 篇 工学
    • 10 篇 计算机科学与技术...
    • 4 篇 电气工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 生物工程
  • 3 篇 理学
    • 2 篇 生物学
    • 1 篇 数学
    • 1 篇 物理学
    • 1 篇 化学
  • 2 篇 医学
    • 2 篇 临床医学
    • 1 篇 基础医学(可授医学...
  • 1 篇 农学

主题

  • 13 篇 automatic data a...
  • 3 篇 optimization
  • 2 篇 reinforcement le...
  • 2 篇 deep learning
  • 2 篇 task analysis
  • 2 篇 pedestrian detec...
  • 2 篇 search problems
  • 2 篇 computer vision
  • 2 篇 training
  • 1 篇 loss function se...
  • 1 篇 fake news
  • 1 篇 cervical cytopat...
  • 1 篇 object detection
  • 1 篇 hyperparameter o...
  • 1 篇 medical image cl...
  • 1 篇 model generaliza...
  • 1 篇 prompting
  • 1 篇 defect pattern r...
  • 1 篇 conversational a...
  • 1 篇 llms

机构

  • 1 篇 soochow univ sch...
  • 1 篇 baidu usa sunnyv...
  • 1 篇 huazhong univ sc...
  • 1 篇 hunan univ coll ...
  • 1 篇 tianjin univ tec...
  • 1 篇 huazhong univ sc...
  • 1 篇 lg ai res
  • 1 篇 postech dept con...
  • 1 篇 georgia inst tec...
  • 1 篇 univ oxford dept...
  • 1 篇 electrical and c...
  • 1 篇 nazarbayev univ ...
  • 1 篇 southern med uni...
  • 1 篇 univ minho algor...
  • 1 篇 hebei univ techn...
  • 1 篇 southern med uni...
  • 1 篇 natl engn lab ro...
  • 1 篇 hong kong polyte...
  • 1 篇 korea univ sch i...
  • 1 篇 univ sydney sch ...

作者

  • 2 篇 liu min
  • 2 篇 wang yaonan
  • 2 篇 tang yi
  • 1 篇 liu yunxin
  • 1 篇 ungarbayev dair
  • 1 篇 cheng shenghua
  • 1 篇 adao telmo
  • 1 篇 tang hongmei
  • 1 篇 hanshal othman a...
  • 1 篇 xu gang
  • 1 篇 gil yoonhee
  • 1 篇 akhtar muhammad ...
  • 1 篇 ucan osman n.
  • 1 篇 magalhaes luis g...
  • 1 篇 wang tianteng
  • 1 篇 chen boyu
  • 1 篇 gu junhua
  • 1 篇 kwak mingu
  • 1 篇 sanjalawe yousef...
  • 1 篇 ouyang wanli

语言

  • 13 篇 英文
检索条件"主题词=Automatic Data Augmentation"
13 条 记 录,以下是1-10 订阅
排序:
automatic data augmentation for medical image segmentation using Adaptive Sequence-length based Deep Reinforcement Learning
收藏 引用
COMPUTERS IN BIOLOGY AND MEDICINE 2024年 169卷 107877-107877页
作者: Xu, Zhenghua Wang, Shengxin Xu, Gang Liu, Yunxin Yu, Miao Zhang, Hongwei Lukasiewicz, Thomas Gu, Junhua Hebei Univ Technol Sch Hlth Sci & Biomed Engn State Key Lab Reliabil & Intelligence Elect Equipm Tianjin Peoples R China Hebei Univ Technol Sch Artificial Intelligence Tianjin Peoples R China Tianjin Univ Technol Sch Comp Sci & Engn Tianjin Peoples R China Vienna Univ Technol Inst L & Computat Vienna Austria Univ Oxford Dept Comp Sci Oxford England
Although existing deep reinforcement learning-based approaches have achieved some success in image augmentation tasks, their effectiveness and adequacy for data augmentation in intelligent medical image analysis are s... 详细信息
来源: 评论
automatic data augmentation Method with Improved Interpretability for Image Classification in Computer Vision Applications
Automatic Data Augmentation Method with Improved Interpretab...
收藏 引用
14th Annual Summit and Conference of the Asia-Pacific-Signal-and-Information-Processing-Association (APSIPA ASC)
作者: Ungarbayev, Dair Demirel, Osman Akhtar, Muhammad Tahir Nazarbayev Univ Dept Elect & Comp Engn Sch Engn & Digital Sci Kabanbay Batyr Ave 53 Nur Sultan Kazakhstan
This paper presents an interpretable automatic data augmentation method. While the mechanism of the existing automatic augmentation methods is not easily understandable, the proposed method seeks to make the process o... 详细信息
来源: 评论
automatic data augmentation by Upper Confidence Bounds for Deep Reinforcement Learning  21
Automatic Data Augmentation by Upper Confidence Bounds for D...
收藏 引用
21st International Conference on Control, Automation and Systems (ICCAS)
作者: Gil, Yoonhee Baek, Jongchan Park, Jonghyuk Han, Soohee POSTECH Dept Convergence IT Engn Pohang 37673 South Korea
In visual reinforcement learning (RL), various approaches succeeded to improve data efficiency. However, the approaches fail to show generalization capabilities if different colors or backgrounds are applied to its en... 详细信息
来源: 评论
AutoPedestrian: An automatic data augmentation and Loss Function Search Scheme for Pedestrian Detection
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2021年 30卷 8483-8496页
作者: Tang, Yi Li, Baopu Liu, Min Chen, Boyu Wang, Yaonan Ouyang, Wanli Hunan Univ Coll Elect & Informat Engn Changsha 410082 Hunan Peoples R China Natl Engn Lab Robot Visual Percept & Control Tech Changsha 410082 Hunan Peoples R China Baidu USA Sunnyvale CA 94089 USA Univ Sydney Sch Elect & Informat Engn Sydney NSW 2006 Australia
Pedestrian detection is a challenging and hot research topic in the field of computer vision, especially for the crowded scenes where occlusion happens frequently. In this paper, we propose a novel AutoPedestrian sche... 详细信息
来源: 评论
Improved wafer map defect pattern classification using automatic data augmentation based lightweight encoder network in contrastive learning
收藏 引用
JOURNAL OF INTELLIGENT MANUFACTURING 2024年 1-13页
作者: Sheng, Yi Yan, Jinda Piao, Minghao Soochow Univ Sch Comp Sci & Technol Suzhou 215006 Jiangsu Peoples R China
In recent years, supervised learning has been the predominant method for wafer map defect pattern classification (WM-DPC), requiring a substantial amount of labeled data to build effective models. Nonetheless, gatheri... 详细信息
来源: 评论
ALADA: A lite automatic data augmentation framework for industrial defect detection
收藏 引用
ADVANCED ENGINEERING INFORMATICS 2023年 58卷
作者: Wang, Yuxuan Chung, Sai-Ho Khan, Waqar Ahmed Wang, Tianteng Xu, David Jingjun Hong Kong Polytech Univ Dept Ind & Syst Engn Hung Hom Hong Kong Peoples R China Univ Sharjah Coll Engn Dept Ind Engn & Engn Management Sharjah U Arab Emirates City Univ Hong Kong Dept Informat Syst Hong Kong Peoples R China
Industrial defect detection is a critical and challenging task in the quality control of manufacturing production. Competent in feature extraction and pattern recognition, deep learning shows great power for classifyi... 详细信息
来源: 评论
Impartial Differentiable automatic data augmentation Based on Finite Difference Approximation for Pedestrian Detection
收藏 引用
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2022年 71卷 1页
作者: Zhou, Shirui Tang, Yi Liu, Min Wang, Yaonan Wen, He Hunan Univ Coll Elect & Informat Engn Natl Engn Res Ctr Robot Visual Percept & Control Changsha 410082 Peoples R China
Pedestrian detection is a challenging task in practical scenarios. data augmentation is an effective way to deal with this problem, but designing a suitable data augmentation policy requires a great deal of manual exp... 详细信息
来源: 评论
An online adaptive augmentation strategy for cervical cytopathology image recognition
收藏 引用
PATTERN RECOGNITION LETTERS 2025年 192卷 93-98页
作者: Tang, Hongmei Liu, Xinyi Cheng, Shenghua Liu, Xiuli Huazhong Univ Sci & Technol Britton Chance Ctr Wuhan Peoples R China Huazhong Univ Sci & Technol MoE Key Lab Biomed Photon Wuhan Natl Lab Optoelect Wuhan Peoples R China Southern Med Univ Sch Biomed Engn Guangzhou Peoples R China Southern Med Univ Guangdong Prov Key Lab Med Image Proc Guangzhou Peoples R China
Cervical cancer has become one of the malignant tumors among women, posing a significant threat to women's health worldwide. Efficient computer-aided screening techniques are extremely significant for popularizing... 详细信息
来源: 评论
STACoRe: Spatio-temporal and action-based contrastive representations for reinforcement learning in Atari
收藏 引用
NEURAL NETWORKS 2023年 第1期160卷 1-11页
作者: Lee, Young Jae Kim, Jaehoon Kwak, Mingu Park, Young Joon Kim, Seoung Bum Korea Univ Sch Ind & Management Engn Seoul South Korea Georgia Inst Technol Sch Ind & Syst Engn Atlanta GA USA LG AI Res Seoul South Korea
With the development of deep learning technology, deep reinforcement learning (DRL) has successfully built intelligent agents in sequential decision-making problems through interaction with image-based environments. H... 详细信息
来源: 评论
Evolutionary Neural Architecture Search for 2D and 3D Medical Image Classification  24th
Evolutionary Neural Architecture Search for 2D and 3D Medica...
收藏 引用
24th International Conference on Computational Science (ICCS)
作者: Ali, Muhammad Junaid Moalic, Laurent Essaid, Mokhtar Idoumghar, Lhassane Univ Haute Alsace IRIMAS UR 7499 F-68093 Mulhouse France
Designing deep learning architectures is a challenging and time-consuming task. To address this problem, Neural Architecture Search (NAS) which automatically searches for a network topology is used. While existing NAS... 详细信息
来源: 评论