咨询与建议

限定检索结果

文献类型

  • 226 篇 期刊文献
  • 139 篇 会议
  • 8 篇 学位论文

馆藏范围

  • 373 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 360 篇 工学
    • 289 篇 电气工程
    • 248 篇 信息与通信工程
    • 159 篇 计算机科学与技术...
    • 37 篇 电子科学与技术(可...
    • 21 篇 交通运输工程
    • 20 篇 控制科学与工程
    • 15 篇 仪器科学与技术
    • 12 篇 软件工程
    • 5 篇 网络空间安全
    • 4 篇 航空宇航科学与技...
    • 3 篇 材料科学与工程(可...
    • 3 篇 石油与天然气工程
    • 2 篇 机械工程
    • 2 篇 测绘科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
    • 1 篇 船舶与海洋工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
  • 24 篇 理学
    • 13 篇 物理学
    • 8 篇 化学
    • 8 篇 生物学
    • 1 篇 海洋科学
    • 1 篇 地球物理学
    • 1 篇 系统科学
  • 9 篇 管理学
    • 8 篇 管理科学与工程(可...
  • 8 篇 医学
    • 8 篇 临床医学
  • 5 篇 军事学
    • 4 篇 军队指挥学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 文学
    • 1 篇 新闻传播学

主题

  • 373 篇 automatic modula...
  • 112 篇 deep learning
  • 71 篇 modulation
  • 63 篇 feature extracti...
  • 37 篇 cognitive radio
  • 34 篇 convolutional ne...
  • 26 篇 convolutional ne...
  • 25 篇 training
  • 24 篇 wireless communi...
  • 23 篇 signal to noise ...
  • 22 篇 convolution
  • 17 篇 computational mo...
  • 16 篇 ofdm
  • 15 篇 machine learning
  • 12 篇 signal classific...
  • 12 篇 spectrum sensing
  • 11 篇 task analysis
  • 11 篇 neural networks
  • 11 篇 cumulants
  • 10 篇 cnn

机构

  • 10 篇 harbin engn univ...
  • 7 篇 beijing univ pos...
  • 6 篇 xidian univ sch ...
  • 6 篇 beihang univ sch...
  • 6 篇 nanjing univ pos...
  • 5 篇 nanjing univ aer...
  • 5 篇 njupt coll telec...
  • 5 篇 harbin inst tech...
  • 5 篇 beijing univ pos...
  • 4 篇 hanyang univ dep...
  • 4 篇 beihang univ unm...
  • 4 篇 state key lab co...
  • 4 篇 xidian univ stat...
  • 3 篇 dalian maritime ...
  • 3 篇 beijing inst tec...
  • 3 篇 indian inst tech...
  • 3 篇 natl key lab ele...
  • 3 篇 beihang univ sch...
  • 3 篇 beijing informat...
  • 3 篇 north china univ...

作者

  • 12 篇 kim dong-seong
  • 11 篇 gui guan
  • 10 篇 huang sai
  • 9 篇 lin yun
  • 9 篇 wang yu
  • 8 篇 feng zhiyong
  • 7 篇 ding wenrui
  • 7 篇 zhang duona
  • 7 篇 jing xiaojun
  • 7 篇 zhou fuhui
  • 7 篇 wu qihui
  • 6 篇 chang shuo
  • 6 篇 yoon dongweon
  • 6 篇 zhou quan
  • 5 篇 huynh-the thien
  • 5 篇 zhang baochang
  • 5 篇 fan yangyu
  • 5 篇 zheng shilian
  • 5 篇 dobre octavia a.
  • 5 篇 ma jitong

语言

  • 363 篇 英文
  • 6 篇 其他
  • 3 篇 中文
检索条件"主题词=Automatic Modulation Classification"
373 条 记 录,以下是121-130 订阅
排序:
Deep Learning-Based automatic modulation classification With Blind OFDM Parameter Estimation
收藏 引用
IEEE ACCESS 2021年 9卷 108305-108317页
作者: Park, Myung Chul Han, Dong Seog Kyungpook Natl Univ Sch Elect & Elect Engn Daegu 41566 South Korea
automatic modulation classification (AMC) is an essential factor in dynamic spectrum access to fulfill the spectrum demand of 5G wireless communications for achieving high data rate and low latency. Many deep learning... 详细信息
来源: 评论
Training Images Generation for CNN Based automatic modulation classification
收藏 引用
IEEE ACCESS 2021年 9卷 62916-62925页
作者: Zhang, Wei-Tao Cui, Dan Lou, Shun-Tian Xidian Univ Sch Elect Engn Xian 710071 Peoples R China Xidian Univ Res Inst Adv Remote Sensing Technol Xian 710071 Peoples R China
Convolutional neural network (CNN) models have recently demonstrated impressive classification and recognition performance on image and video processing scope. In this paper, we investigate the application of CNN to i... 详细信息
来源: 评论
automatic modulation classification: A Deep Architecture Survey
收藏 引用
IEEE ACCESS 2021年 9卷 142950-142971页
作者: Thien Huynh-The Quoc-Viet Pham Toan-Van Nguyen Thanh Thi Nguyen Ruby, Rukhsana Zeng, Ming Kim, Dong-Seong Kumoh Natl Inst Technol Dept IT Convergence Gumi 39177 Gyeongsangbuk D South Korea Pusan Natl Univ Korean Southeast Ctr 4 Ind Revolut Leader Educ Busan 46241 South Korea Utah State Univ Dept Elect & Comp Engn Logan UT 84321 USA Deakin Univ Sch Informat Technol Burwood Campus Burwood Vic Australia Shenzhen Univ Coll Comp Sci & Software Engn Shenzhen 518060 Peoples R China Laval Univ Dept Elect & Comp Engn Quebec City PQ G1V 0A6 Canada
automatic modulation classification (AMC), which aims to blindly identify the modulation type of an incoming signal at the receiver in wireless communication systems, is a fundamental signal processing technique in th... 详细信息
来源: 评论
Deep Learning-Based Robust automatic modulation classification for Cognitive Radio Networks
收藏 引用
IEEE ACCESS 2021年 9卷 92386-92393页
作者: Kim, Seung-Hwan Kim, Jae-Woo Nwadiugwu, Williams-Paul Kim, Dong-Seong Kumoh Natl Inst Technol Dept IT Convergence Engn Gumi 39177 South Korea
In this paper, a novel deep learning-based robust automatic modulation classification (AMC) method is proposed for cognitive radio networks. Generally, as network input of AMC convolutional neural networks (CNNs) imag... 详细信息
来源: 评论
automatic modulation classification Using Multi-Scale Convolutional Neural Network  31
Automatic Modulation Classification Using Multi-Scale Convol...
收藏 引用
31st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE PIMRC)
作者: Chen, Hongtai Guo, Li Dong, Chao Cong, Fuze Mu, Xidong Beijing Univ Posts & Telecommun Minist Educ Key Lab Universal Wireless Commun Beijing Peoples R China
In this paper, a multi-scale convolutional neural network-based (MSN) method is proposed for robust automatic modulation classification (AMC). The classifier directly utilizes in-phase and quadrature (I/Q) samples to ... 详细信息
来源: 评论
A Data Preprocessing Method for automatic modulation classification Based on CNN
收藏 引用
IEEE COMMUNICATIONS LETTERS 2021年 第4期25卷 1206-1210页
作者: Zhang, Haozheng Huang, Ming Yang, Jingjing Sun, Wei Yunnan Univ Sch Informat Sci & Engn Kunming 650091 Yunnan Peoples R China
As a backbone of deep learning models, convolutional neural networks (CNNs) are widely used in the field of automatic modulation classification. Nevertheless, we speculate that the forms of signal samples make them in... 详细信息
来源: 评论
Time and phase features network model for automatic modulation classification
收藏 引用
COMPUTERS & ELECTRICAL ENGINEERING 2023年 第PartA期111卷
作者: Cui, Tianshu Wang, Dong Ji, Libin Han, Jiabao Huang, Zhen Tsinghua Univ Beijing Beijing Natl Researh Ctr Informat Sci & Tehnol BNR 30 Shuangqing Rd Beijing 100190 Peoples R China Chinese Acad Sci Natl Space Sci Ctr Key Lab Elect & Informat Technol Space Syst Beijing 100190 Peoples R China
automatic modulation classification (AMC) constitutes a fundamental technology for enabling automatic demodulation in Cognitive Communication Systems (CCS). Due to the size, weight, and power (SWaP) constraints of emb... 详细信息
来源: 评论
Frequency learning attention networks based on deep learning for automatic modulation classification in wireless communication
收藏 引用
PATTERN RECOGNITION 2023年 第1期137卷
作者: Zhang, Duona Lu, Yuanyao Li, Yundong Ding, Wenrui Zhang, Baochang Xiao, Jing North China Univ Technol Sch Informat Sci & Technol Beijing Peoples R China Beihang Univ Unmanned Syst Res Inst Beijing Peoples R China Beihang Univ Inst Artificial Intelligence Beijing Peoples R China Beihang Univ Sch Elect & Informat Engn Beijing Peoples R China
Deep neural networks have been recently applied in automatic modulation classification task and achieved remarkable success. However, Existing neural networks mainly focus on the purely data-driven architecture design... 详细信息
来源: 评论
Deep Learning-Based automatic modulation classification Using Robust CNN Architecture for Cognitive Radio Networks
收藏 引用
SENSORS 2023年 第23期23卷 9467-9467页
作者: Abd-Elaziz, Ola Fekry Abdalla, Mahmoud Elsayed, Rania A. Zagazig Univ Dept Elect & Commun Engn Zagazig 44519 Egypt October 6 Univ Dept Elect & Commun Engn Fac Engn 6th October City Cairo 12585 Egypt
automatic modulation classification (AMC) is an essential technique in intelligent receivers of non-cooperative communication systems such as cognitive radio networks and military applications. This article proposes a... 详细信息
来源: 评论
Semi-supervised-based automatic modulation classification with domain adaptation for wireless IoT spectrum monitoring
收藏 引用
FRONTIERS IN PHYSICS 2023年 11卷
作者: Zhou, Quan Zhang, Ronghui Jing, Zexuan Jing, Xiaojun Beijing Univ Posts & Telecommun Sch Informat & Commun Engn Beijing Peoples R China
Dramatic advances in wireless networks have led to the Smart IoT, which may enable new modes of information transfer. Generally, data-driven advanced artificial intelligence (AI) techniques can be used in smart IoT ne... 详细信息
来源: 评论