咨询与建议

限定检索结果

文献类型

  • 226 篇 期刊文献
  • 139 篇 会议
  • 8 篇 学位论文

馆藏范围

  • 373 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 360 篇 工学
    • 289 篇 电气工程
    • 248 篇 信息与通信工程
    • 159 篇 计算机科学与技术...
    • 37 篇 电子科学与技术(可...
    • 21 篇 交通运输工程
    • 20 篇 控制科学与工程
    • 15 篇 仪器科学与技术
    • 12 篇 软件工程
    • 5 篇 网络空间安全
    • 4 篇 航空宇航科学与技...
    • 3 篇 材料科学与工程(可...
    • 3 篇 石油与天然气工程
    • 2 篇 机械工程
    • 2 篇 测绘科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
    • 1 篇 船舶与海洋工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
  • 24 篇 理学
    • 13 篇 物理学
    • 8 篇 化学
    • 8 篇 生物学
    • 1 篇 海洋科学
    • 1 篇 地球物理学
    • 1 篇 系统科学
  • 9 篇 管理学
    • 8 篇 管理科学与工程(可...
  • 8 篇 医学
    • 8 篇 临床医学
  • 5 篇 军事学
    • 4 篇 军队指挥学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 文学
    • 1 篇 新闻传播学

主题

  • 373 篇 automatic modula...
  • 112 篇 deep learning
  • 71 篇 modulation
  • 63 篇 feature extracti...
  • 37 篇 cognitive radio
  • 34 篇 convolutional ne...
  • 26 篇 convolutional ne...
  • 25 篇 training
  • 24 篇 wireless communi...
  • 23 篇 signal to noise ...
  • 22 篇 convolution
  • 17 篇 computational mo...
  • 16 篇 ofdm
  • 15 篇 machine learning
  • 12 篇 signal classific...
  • 12 篇 spectrum sensing
  • 11 篇 task analysis
  • 11 篇 neural networks
  • 11 篇 cumulants
  • 10 篇 cnn

机构

  • 10 篇 harbin engn univ...
  • 7 篇 beijing univ pos...
  • 6 篇 xidian univ sch ...
  • 6 篇 beihang univ sch...
  • 6 篇 nanjing univ pos...
  • 5 篇 nanjing univ aer...
  • 5 篇 njupt coll telec...
  • 5 篇 harbin inst tech...
  • 5 篇 beijing univ pos...
  • 4 篇 hanyang univ dep...
  • 4 篇 beihang univ unm...
  • 4 篇 state key lab co...
  • 4 篇 xidian univ stat...
  • 3 篇 dalian maritime ...
  • 3 篇 beijing inst tec...
  • 3 篇 indian inst tech...
  • 3 篇 natl key lab ele...
  • 3 篇 beihang univ sch...
  • 3 篇 beijing informat...
  • 3 篇 north china univ...

作者

  • 12 篇 kim dong-seong
  • 11 篇 gui guan
  • 10 篇 huang sai
  • 9 篇 lin yun
  • 9 篇 wang yu
  • 8 篇 feng zhiyong
  • 7 篇 ding wenrui
  • 7 篇 zhang duona
  • 7 篇 jing xiaojun
  • 7 篇 zhou fuhui
  • 7 篇 wu qihui
  • 6 篇 chang shuo
  • 6 篇 yoon dongweon
  • 6 篇 zhou quan
  • 5 篇 huynh-the thien
  • 5 篇 zhang baochang
  • 5 篇 fan yangyu
  • 5 篇 zheng shilian
  • 5 篇 dobre octavia a.
  • 5 篇 ma jitong

语言

  • 363 篇 英文
  • 6 篇 其他
  • 3 篇 中文
检索条件"主题词=Automatic Modulation Classification"
373 条 记 录,以下是161-170 订阅
排序:
Deep Learning-Based Cooperative automatic modulation classification Method for MIMO Systems
收藏 引用
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 2020年 第4期69卷 4575-4579页
作者: Wang, Yu Wang, Juan Zhang, Wei Yang, Jie Gui, Guan Nanjing Univ Posts & Telecommun Coll Telecommun & Informat Engn Nanjing 210003 Peoples R China Nanjing Univ Posts & Telecommun Sch Comp Sci Nanjing 210023 Peoples R China
automatic modulation classification (AMC) is one of the most essential algorithms to identify the modulation types for the non-cooperative communication systems. Recently, it has been demonstrated that deep learning (... 详细信息
来源: 评论
Accumulated Polar Feature-Based Deep Learning for Efficient and Lightweight automatic modulation classification With Channel Compensation Mechanism
收藏 引用
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 2020年 第12期69卷 15472-15485页
作者: Teng, Chieh-Fang Chou, Ching-Yao Chen, Chun-Hsiang Wu, An-Yeu Natl Taiwan Univ Grad Inst Elect Engn Taipei 10617 Taiwan Natl Taiwan Univ Dept Elect Engn Taipei 10617 Taiwan
In next-generation communications, massive machine-type communications (mMTC) induce severe burden on base stations. To address such an issue, automatic modulation classification (AMC) can help to reduce signaling ove... 详细信息
来源: 评论
automatic modulation classification Based on Bispectrum and CNN  8
Automatic Modulation Classification Based on Bispectrum and ...
收藏 引用
IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC)
作者: Li, Yongbin Shao, Gaoping Wang, Bin PLA Strateg Support Force Informat Engn Univ Zhengzhou Henan Peoples R China
automatic modulation classification (AMC) is crucial for the subsequent analysis and processing of modulated signals. In this paper, we propose an AMC method based on bispectrum and convolutional neural network (CNN) ... 详细信息
来源: 评论
automatic modulation classification Under Non-Gaussian Noise: A Deep Residual Learning Approach
Automatic Modulation Classification Under Non-Gaussian Noise...
收藏 引用
IEEE International Conference on Communications (IEEE ICC)
作者: Ma, Jitong Lin, Shih-Chun Gao, Hongjie Qiu, Tianshuang Dalian Univ Technol Dept Elect Informat & Elect Engn Dalian Peoples R China North Carolina State Univ Dept Elect & Comp Engn Raleigh NC 27606 USA
During the last few years, automatic modulation classification (AMC) has attracted widespread attention in both civilian and military applications. Conventional AMC schemes are primarily developed under Gaussian noise... 详细信息
来源: 评论
Accuracy Analysis of Feature-Based automatic modulation classification via Deep Neural Network
收藏 引用
SENSORS 2021年 第24期21卷 8252-8252页
作者: Ge, Zhan Jiang, Hongyu Guo, Youwei Zhou, Jie China Acad Engn Phys Inst Elect Engn Mianyang 621000 Peoples R China
A feature-based automatic modulation classification (FB-AMC) algorithm has been widely investigated because of its better performance and lower complexity. In this study, a deep learning model was designed to analyze ... 详细信息
来源: 评论
LSTM-based automatic modulation classification  15
LSTM-based Automatic Modulation Classification
收藏 引用
15th IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)
作者: Zhou, Quan Jing, Xiaojun He, Yuan Cui, Yuanhao Kadoch, Michel Cheriet, Mohamed Beijing Univ Posts & Telecommun Beijing Peoples R China Univ Quebec ETS Montreal PQ Canada
Recently, automatic modulation classification (AMC) has been studied by more and more researchers, and a host of methods based on deep learning have been proposed. Different from image data, signal data is a sequence ... 详细信息
来源: 评论
Exploiting a low-cost CNN with skip connection for robust automatic modulation classification
Exploiting a low-cost CNN with skip connection for robust au...
收藏 引用
IEEE Wireless Communications and Networking Conference (IEEE WCNC)
作者: Thien Huynh-The Hua, Cam-Hao Kim, Jae-Woo Kim, Seung-Hwan Kim, Dong-Seong Kumoh Natl Inst Technol ICT Convergence Res Ctr Gumi Si Gyeongsangbuk D South Korea Kyung Hee Univ Dept Comp Sci & Engn Seoul South Korea
Recently, deep learning (DL) is an innovative machine learning (ML) technique that has gained the outstanding achievements in computer vision and natural language processing. This work takes advantage of DL for effect... 详细信息
来源: 评论
Deep Convolutional Neural Network with Wavelet Decomposition for automatic modulation classification  15
Deep Convolutional Neural Network with Wavelet Decomposition...
收藏 引用
15th IEEE Conference on Industrial Electronics and Applications (ICIEA)
作者: Wang, Hongyu Ding, Wenrui Zhang, Duona Zhang, Baochang Beihang Univ Sch Elect & Informat Engn Beijing Peoples R China Beihang Univ Unmanned Syst Res Inst Beijing Peoples R China Beihang Univ Sch Automat Sci & Elect Engn Beijing Peoples R China
In cognitive radio, signal recognition is an important technology and modulation recognition plays a key role in it. With the development of artificial intelligence, deep learning algorithms applied in automatic modul... 详细信息
来源: 评论
Features Fusion based automatic modulation classification Using Convolutional Neural Network
Features Fusion based Automatic Modulation Classification Us...
收藏 引用
39th IEEE International Conference on Computer Communications (IEEE INFOCOM)
作者: Lin, Chunsheng Huang, Juanjuan Huang, Sai Yao, Yuanyuan Guo, Xin Beijing Univ Posts & Telecommun Key Lab Universal Wireless Commun Minist Educ Beijing 100876 Peoples R China Beijing Informat Sci & Technol Univ Sch Informat & Commun Engn Beijing 100101 Peoples R China Zhengzhou Univ Sch Informat Engn Zhengzhou 450001 Peoples R China
The modulation format is a key parameter that. influences the monitoring of the intercepted signals. automatic modulation classification (AMC) is utilized to recognize the modulation format of the intercepted signals.... 详细信息
来源: 评论
AMC-IoT: automatic modulation classification Using Efficient Convolutional Neural Networks for Low Powered IoT Devices  11
AMC-IoT: Automatic Modulation Classification Using Efficient...
收藏 引用
11th International Conference on Information and Communication Technology Convergence (ICTC) - Data, Network, and AI in the age of Untact (ICTC)
作者: Usman, Muhammad Lee, Jeong-A Chosun Univ Dept Comp Engn Gwangju South Korea
automatic modulation classification (AMC) is used to identify the modulation for the received signal. IoT devices use modern communication methods which are based on multiple input multiple output (MIMO) in which the ... 详细信息
来源: 评论