咨询与建议

限定检索结果

文献类型

  • 226 篇 期刊文献
  • 139 篇 会议
  • 8 篇 学位论文

馆藏范围

  • 373 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 360 篇 工学
    • 289 篇 电气工程
    • 248 篇 信息与通信工程
    • 159 篇 计算机科学与技术...
    • 37 篇 电子科学与技术(可...
    • 21 篇 交通运输工程
    • 20 篇 控制科学与工程
    • 15 篇 仪器科学与技术
    • 12 篇 软件工程
    • 5 篇 网络空间安全
    • 4 篇 航空宇航科学与技...
    • 3 篇 材料科学与工程(可...
    • 3 篇 石油与天然气工程
    • 2 篇 机械工程
    • 2 篇 测绘科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
    • 1 篇 船舶与海洋工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
  • 24 篇 理学
    • 13 篇 物理学
    • 8 篇 化学
    • 8 篇 生物学
    • 1 篇 海洋科学
    • 1 篇 地球物理学
    • 1 篇 系统科学
  • 9 篇 管理学
    • 8 篇 管理科学与工程(可...
  • 8 篇 医学
    • 8 篇 临床医学
  • 5 篇 军事学
    • 4 篇 军队指挥学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 文学
    • 1 篇 新闻传播学

主题

  • 373 篇 automatic modula...
  • 112 篇 deep learning
  • 71 篇 modulation
  • 63 篇 feature extracti...
  • 37 篇 cognitive radio
  • 34 篇 convolutional ne...
  • 26 篇 convolutional ne...
  • 25 篇 training
  • 24 篇 wireless communi...
  • 23 篇 signal to noise ...
  • 22 篇 convolution
  • 17 篇 computational mo...
  • 16 篇 ofdm
  • 15 篇 machine learning
  • 12 篇 signal classific...
  • 12 篇 spectrum sensing
  • 11 篇 task analysis
  • 11 篇 neural networks
  • 11 篇 cumulants
  • 10 篇 cnn

机构

  • 10 篇 harbin engn univ...
  • 7 篇 beijing univ pos...
  • 6 篇 xidian univ sch ...
  • 6 篇 beihang univ sch...
  • 6 篇 nanjing univ pos...
  • 5 篇 nanjing univ aer...
  • 5 篇 njupt coll telec...
  • 5 篇 harbin inst tech...
  • 5 篇 beijing univ pos...
  • 4 篇 hanyang univ dep...
  • 4 篇 beihang univ unm...
  • 4 篇 state key lab co...
  • 4 篇 xidian univ stat...
  • 3 篇 dalian maritime ...
  • 3 篇 beijing inst tec...
  • 3 篇 indian inst tech...
  • 3 篇 natl key lab ele...
  • 3 篇 beihang univ sch...
  • 3 篇 beijing informat...
  • 3 篇 north china univ...

作者

  • 12 篇 kim dong-seong
  • 11 篇 gui guan
  • 10 篇 huang sai
  • 9 篇 lin yun
  • 9 篇 wang yu
  • 8 篇 feng zhiyong
  • 7 篇 ding wenrui
  • 7 篇 zhang duona
  • 7 篇 jing xiaojun
  • 7 篇 zhou fuhui
  • 7 篇 wu qihui
  • 6 篇 chang shuo
  • 6 篇 yoon dongweon
  • 6 篇 zhou quan
  • 5 篇 huynh-the thien
  • 5 篇 zhang baochang
  • 5 篇 fan yangyu
  • 5 篇 zheng shilian
  • 5 篇 dobre octavia a.
  • 5 篇 ma jitong

语言

  • 363 篇 英文
  • 6 篇 其他
  • 3 篇 中文
检索条件"主题词=Automatic Modulation Classification"
373 条 记 录,以下是171-180 订阅
排序:
Artificial Intelligence-Driven Real-Time automatic modulation classification Scheme for Next-Generation Cellular Networks
收藏 引用
IEEE ACCESS 2021年 9卷 155584-155597页
作者: Kaleem, Zeeshan Ali, Muhammad Ahmad, Ishtiaq Khalid, Waqas Alkhayyat, Ahmed Jamalipour, Abbas COMSATS Univ Islamabad Elect & Comp Engn Dept Wah Campus Rawalpindi 47040 Wah Cantt Pakistan Gomal Univ Fac Engn & Technol Elect Engn Dept Dera Ismail Khan 29220 Pakistan Korea Univ Inst Ind Technol Sejong 30019 South Korea Islamic Univ Coll Tech Engn Najaf 7003 Iraq Univ Sydney Sch Elect & Informat Engn Sydney NSW 2006 Australia
automatic modulation classification (AMC) can play an important role in the timely identification of suspicious and unwanted signal activities to enable secure communication in future next-generation cellular networks... 详细信息
来源: 评论
Deep Sparse Learning for automatic modulation classification Using Recurrent Neural Networks
收藏 引用
SENSORS 2021年 第19期21卷 6410-6410页
作者: Zang, Ke Wu, Wenqi Luo, Wei Zhejiang Univ Coll Biomed Engn & Instrument Sci Yuquan Campus38 Zheda Rd Hangzhou 310027 Zhejiang Peoples R China Chinese Univ Hong Kong Dept Biomed Engn Shatin Hong Kong Peoples R China
Deep learning models, especially recurrent neural networks (RNNs), have been successfully applied to automatic modulation classification (AMC) problems recently. However, deep neural networks are usually overparameter... 详细信息
来源: 评论
Dense Layer Dropout Based CNN Architecture for automatic modulation classification  26
Dense Layer Dropout Based CNN Architecture for Automatic Mod...
收藏 引用
26th National Conference on Communications (NCC)
作者: Dileep, P. Das, Dibyajyoti Bora, Prabin Kumar IIT Guwahati Dept EEE Gauhati Assam India
automatic modulation classification (AMC) is an important part of signal identification for cognitive radio as well as military communication. The problem has been approached traditionally using either likelihood-base... 详细信息
来源: 评论
A Two-fold Group Lasso based Lightweight Deep Neural Network for automatic modulation classification
A Two-fold Group Lasso based Lightweight Deep Neural Network...
收藏 引用
IEEE International Conference on Communications (IEEE ICC) / Workshop on NOMA for 5G and Beyond
作者: Liu, Xiaofeng Wang, Qing Wang, Haozhi Tianijn Univ Sch Elect & Informat Engn Tianjin Peoples R China
automatic modulation classification (AMC) is a hot topic in modern wireless communication, which is a classification problem essentially. The deep learning methods have been applied to AMC gradually, for its excellent... 详细信息
来源: 评论
Radio Signal automatic modulation classification based on Deep Learning and Expert Features  4
Radio Signal Automatic Modulation Classification based on De...
收藏 引用
4th IEEE Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)
作者: Yao, Tianyao Chai, Yuan Wang, Shuai Miao, Xiaqing Bu, Xiangyuan Beijing Inst Technol Sch Informat & Elect Beijing Peoples R China China Acad Space Technol Inst Telecommun Satellite Beijing Peoples R China
automatic modulation classification (AMC) becomes more and more important in the electronic reconnaissance. Recently, lots of researchers focus on deep learning architecture based AMC approach but the recognition rate... 详细信息
来源: 评论
An effective approach for low-complexity maximum likelihood based automatic modulation classification of STBC-MIMO systems
收藏 引用
Frontiers of Information Technology & Electronic Engineering 2020年 第3期21卷 465-476页
作者: Maqsood H.SHAH Xiao-yu DANG College of Electronic and Information Engineering Nanjing University of Aeronautics and AstronauticsNanjing 211106China
A low-complexity likelihood methodology is proposed for automatic modulation classification of orthogonal space-time block code(STBC)based multiple-input multiple-output(MIMO)*** exploit the zero-forcing equalization ... 详细信息
来源: 评论
automatic modulation classification in α-stable noise using graph-based generalized second-order cyclic spectrum analysis
收藏 引用
PHYSICAL COMMUNICATION 2019年 37卷 100854-000页
作者: Yan, Xiao Zhang, Guoyu Wu, Hsiao-Chun Liu, Guannan Univ Elect Sci & Technol China Sch Aeronaut & Astronaut Chengdu 611731 Sichuan Peoples R China Louisiana State Univ Sch Elect Engn & Comp Sci Baton Rouge LA 70803 USA
An innovative automatic modulation classification using graph-based generalized second-order cyclic spectrum analysis in the background of alpha-stable noise is presented in this paper. In our proposed method, the thr... 详细信息
来源: 评论
automatic modulation classification of Overlapped Sources Using Multi-Gene Genetic Programming With Structural Rick Minimization principle
收藏 引用
IEEE ACCESS 2018年 6卷 48827-48839页
作者: Huang, Sai Jiang, Yizhou Qin, Xiaoqi Gao, Yue Feng, Zhiyong Zhang, Ping Beijing Univ Posts & Telecommun Key Lab Universal Wireless Commun Minist Educ Beijing 100876 Peoples R China Nanjing Univ Aeronaut & Astronaut Key Lab Dynam Cognit Syst Electromagnet Spectrum Minist Ind & Informat Technol Nanjing 211106 Jiangsu Peoples R China Queen Mary Univ London Sch Elect Engn & Comp Sci London E1 4NS England
As the spectrum environment becomes increasingly crowded and complicated, primary users may be interfered by secondary users and other illegal users. automatic modulation classification (AMC) of a single source cannot... 详细信息
来源: 评论
automatic modulation classification: A Deep Learning Enabled Approach
收藏 引用
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 2018年 第11期67卷 10760-10772页
作者: Meng, Fan Chen, Peng Wu, Lenan Wang, Xianbin Southeast Univ Sch Informat Sci & Engn Nanjing 210096 Jiangsu Peoples R China Southeast Univ State Key Lab Millimeter Waves Nanjing 210096 Jiangsu Peoples R China Western Univ Dept Elect & Comp Engn London ON N6A 3K7 Canada
automatic modulation classification (AMC), which plays critical roles in both civilian and military applications, is investigated in this paper through a deep learning approach. Conventional AMCs can be categorized in... 详细信息
来源: 评论
automatic modulation classification Using Moments and Likelihood Maximization
收藏 引用
IEEE COMMUNICATIONS LETTERS 2018年 第5期22卷 938-941页
作者: Abu-Romoh, Mohannad Aboutaleb, Ahmed Rezki, Zouheir Univ Idaho Dept Elect & Comp Engn Moscow ID 83844 USA
Motivated by the fact that moments of the received signal are easy to compute and can provide a simple way to automatically classify the modulation of the transmitted signal, we propose a hybrid method for automatic m... 详细信息
来源: 评论