咨询与建议

限定检索结果

文献类型

  • 226 篇 期刊文献
  • 139 篇 会议
  • 8 篇 学位论文

馆藏范围

  • 373 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 360 篇 工学
    • 289 篇 电气工程
    • 248 篇 信息与通信工程
    • 159 篇 计算机科学与技术...
    • 37 篇 电子科学与技术(可...
    • 21 篇 交通运输工程
    • 20 篇 控制科学与工程
    • 15 篇 仪器科学与技术
    • 12 篇 软件工程
    • 5 篇 网络空间安全
    • 4 篇 航空宇航科学与技...
    • 3 篇 材料科学与工程(可...
    • 3 篇 石油与天然气工程
    • 2 篇 机械工程
    • 2 篇 测绘科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
    • 1 篇 船舶与海洋工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
  • 24 篇 理学
    • 13 篇 物理学
    • 8 篇 化学
    • 8 篇 生物学
    • 1 篇 海洋科学
    • 1 篇 地球物理学
    • 1 篇 系统科学
  • 9 篇 管理学
    • 8 篇 管理科学与工程(可...
  • 8 篇 医学
    • 8 篇 临床医学
  • 5 篇 军事学
    • 4 篇 军队指挥学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 文学
    • 1 篇 新闻传播学

主题

  • 373 篇 automatic modula...
  • 112 篇 deep learning
  • 71 篇 modulation
  • 63 篇 feature extracti...
  • 37 篇 cognitive radio
  • 34 篇 convolutional ne...
  • 26 篇 convolutional ne...
  • 25 篇 training
  • 24 篇 wireless communi...
  • 23 篇 signal to noise ...
  • 22 篇 convolution
  • 17 篇 computational mo...
  • 16 篇 ofdm
  • 15 篇 machine learning
  • 12 篇 signal classific...
  • 12 篇 spectrum sensing
  • 11 篇 task analysis
  • 11 篇 neural networks
  • 11 篇 cumulants
  • 10 篇 cnn

机构

  • 10 篇 harbin engn univ...
  • 7 篇 beijing univ pos...
  • 6 篇 xidian univ sch ...
  • 6 篇 beihang univ sch...
  • 6 篇 nanjing univ pos...
  • 5 篇 nanjing univ aer...
  • 5 篇 njupt coll telec...
  • 5 篇 harbin inst tech...
  • 5 篇 beijing univ pos...
  • 4 篇 hanyang univ dep...
  • 4 篇 beihang univ unm...
  • 4 篇 state key lab co...
  • 4 篇 xidian univ stat...
  • 3 篇 dalian maritime ...
  • 3 篇 beijing inst tec...
  • 3 篇 indian inst tech...
  • 3 篇 natl key lab ele...
  • 3 篇 beihang univ sch...
  • 3 篇 beijing informat...
  • 3 篇 north china univ...

作者

  • 12 篇 kim dong-seong
  • 11 篇 gui guan
  • 10 篇 huang sai
  • 9 篇 lin yun
  • 9 篇 wang yu
  • 8 篇 feng zhiyong
  • 7 篇 ding wenrui
  • 7 篇 zhang duona
  • 7 篇 jing xiaojun
  • 7 篇 zhou fuhui
  • 7 篇 wu qihui
  • 6 篇 chang shuo
  • 6 篇 yoon dongweon
  • 6 篇 zhou quan
  • 5 篇 huynh-the thien
  • 5 篇 zhang baochang
  • 5 篇 fan yangyu
  • 5 篇 zheng shilian
  • 5 篇 dobre octavia a.
  • 5 篇 ma jitong

语言

  • 363 篇 英文
  • 6 篇 其他
  • 3 篇 中文
检索条件"主题词=Automatic Modulation Classification"
373 条 记 录,以下是181-190 订阅
排序:
Convolutional neural network and multi-feature fusion for automatic modulation classification
收藏 引用
ELECTRONICS LETTERS 2019年 第16期55卷 895-+页
作者: Wu, Hao Li, Yaxing Zhou, Liang Meng, Jin Naval Univ Engn Natl Key Lab Sci & Technol Vessel Integrated Powe Wuhan 430033 Hubei Peoples R China
automatic modulation classification (AMC) lies at the core of cognitive radio and spectrum sensing. In this Letter, the authors propose a novel convolutional neural network (CNN)-based AMC method with multi-feature fu... 详细信息
来源: 评论
Deep Hierarchical Network for automatic modulation classification
收藏 引用
IEEE ACCESS 2019年 7卷 94604-94613页
作者: Nie, Jinbo Zhang, Yan He, Zunwen Chen, Shiyao Gong, Shouliang Zhang, Wancheng Beijing Inst Technol Sch Informat & Elect Beijing 100081 Peoples R China
In non-cooperative communication scenarios, automatic modulation classification (AMC) is the premise of information acquisition. It has been a difficult issue for decades due to the attenuation and interference during... 详细信息
来源: 评论
Robust automatic modulation classification based on convolutional and recurrent fusion network
收藏 引用
PHYSICAL COMMUNICATION 2020年 43卷 101213-101213页
作者: Lyu, Zhichao Wang, Yu Li, Wenmei Guo, Liang Yang, Jie Sun, Jinlong Liu, Miao Gui, Guan Nanjing Univ Posts & Telecommun Coll Telecommun & Informat Engn Nanjing 210003 Peoples R China Nanjing Univ Posts & Telecommun Sch Geog & Biol Informat Nanjing 210023 Peoples R China China Acad Informat & Commun Technol Beijing 100191 Peoples R China
automatic modulation classification (AMC) is a critical step to recognize the unknown signal modulation types. It is widely applied in non-cooperative communication systems with diverse modulation types and complex co... 详细信息
来源: 评论
A comparison of clustering algorithms for automatic modulation classification
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2020年 151卷 113317-113317页
作者: Mouton, Jacques P. Ferreira, Melvin Helberg, Albertus S. J. North West Univ Sch Elect Elect & Comp Engn ZA-2531 Potchefstroom South Africa
In this paper, the k-means, k-medoids, fuzzy c-means, Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Ordering Points To Identify the Clustering Structure (OPTICS), and hierarchical clustering al... 详细信息
来源: 评论
Identifying physical-layer attacks for IoT security: An automatic modulation classification approach using multi-module fusion neural network
收藏 引用
PHYSICAL COMMUNICATION 2020年 43卷 101180-101180页
作者: Huang, Sai Lin, Chunsheng Zhou, Kai Yao, Yuanyuan Lu, Hua Zhu, Fusheng Beijing Univ Posts & Telecommun Key Lab Universal Wireless Commun Beijing 100876 Peoples R China GuangDong Commun Networks Inst Guangzhou 510700 Guangdong Peoples R China Beijing Informat Sci & Technol Univ Sch Informat & Commun Engn Beijing 100101 Peoples R China NUAA Minist Ind & Informat Technol Key Lab Dynam Cognit Syst Electromagnet Spectrum Nanjing 211106 Peoples R China
The Internet of Things (IoT) is increasingly flourishing with establishing ubiquitous connections in every aspect of our daily lives and industrial production. However, the active physical-layer threats such as spoofi... 详细信息
来源: 评论
automatic modulation classification of Radar Signals Using the Pseudo Margenau-Hill Distribution  2018
Automatic Modulation Classification of Radar Signals Using t...
收藏 引用
10th International Conference on Computer and Automation Engineering (ICCAE)
作者: Zeng, Xiaodong China Elect Technol Grp Corp Res Inst 10 Beijing Peoples R China
In a non-cooperative environment, it is difficult for an electronic intelligence (ELINT) receiver to implement intra-pulse modulation classification. This paper presents an approach based on the Pseudo Margenau-Hill d... 详细信息
来源: 评论
Accuracy Analysis of Feature-based automatic modulation classification with Blind modulation Detection
Accuracy Analysis of Feature-based Automatic Modulation Clas...
收藏 引用
International Conference on Computing, Networking and Communications (ICNC)
作者: Ghasemzadeh, Pejman Banerjee, Subharthi Hempel, Michael Sharif, Hamid Univ Nebraska Lincoln Dept Elect & Comp Engn Lincoln NE 68588 USA
The process of automatic classification of a detected signal's employed modulation type has gained importance in recent years. The goal of such an approach is to maximize the achievable throughput for intelligent ... 详细信息
来源: 评论
Developing RFML Intuition: An automatic modulation classification Architecture Case Study
Developing RFML Intuition: An Automatic Modulation Classific...
收藏 引用
IEEE Military Communications Conference (MILCOM)
作者: Clark, William H. Arndorfer, Vanessa Tamir, Brook Kim, Daniel Vives, Cristian Morris, Hunter Wong, Lauren Headley, William C. Virginia Tech Ted & Karyn Hume Ctr Natl Secur & Technol Blacksburg VA 24061 USA
The application of machine learning to automatic modulation classification (AMC) has typically used transfer learning from architectures found in the image classification domain. This work examines deviations from the... 详细信息
来源: 评论
automatic modulation classification of Cochannel Signals using Deep Learning  23
Automatic Modulation Classification of Cochannel Signals usi...
收藏 引用
23rd IEEE International Conference on Digital Signal Processing (DSP)
作者: Sun, Jiajun Wang, Guohua Lin, Zhiping Razul, Sirajudeen Gulam Lai, Xiaoping Nanyang Technol Univ Sch Elect & Elect Engn Singapore Singapore Nanyang Technol Univ Sensor Array TL NTU Singapore Singapore Hangzhou Dianzi Univ Inst Informat & Control Hangzhou Zhejiang Peoples R China
This paper presents a new approach to the automatic modulation classification (AMC) of cochannel signals based on deep learning techniques using convolutional neural network (CNN). Conventional approaches to this prob... 详细信息
来源: 评论
Effective Feature-Based automatic modulation classification Method Using DNN Algorithm  1
Effective Feature-Based Automatic Modulation Classification ...
收藏 引用
1st International Conference on Artificial Intelligence in Information and Communication (ICAIIC)
作者: Lee, Sang Hoon Kim, Kwang-Yul Kim, Jae Hyun Shin, Yoan Soongsil Univ Sch Elect Engn Seoul 06978 South Korea Ajou Univ Dept Elect & Comp Engn Suwon 16499 South Korea
In this paper, we propose an effective feature-based automatic modulation classification (AMC) method using a deep neural network (DNN). In order to classify the modulation type, we consider effective features accordi... 详细信息
来源: 评论